Spaces:
Running
Running
vijul.shah
commited on
Commit
·
8f8ef33
1
Parent(s):
4b41e60
Blink Detection Support Added, Predicted DIameter Post Analysis Plots Added
Browse files- app.py +72 -5
- app_utils.py +138 -66
- image.py +0 -32
- registrations/models.py +2 -70
- video.py +0 -48
app.py
CHANGED
@@ -5,9 +5,11 @@ import os.path as osp
|
|
5 |
from PIL import Image
|
6 |
from io import BytesIO
|
7 |
import numpy as np
|
|
|
8 |
import streamlit as st
|
9 |
from PIL import ImageOps
|
10 |
from matplotlib import pyplot as plt
|
|
|
11 |
|
12 |
root_path = osp.abspath(osp.join(__file__, osp.pardir))
|
13 |
sys.path.append(root_path)
|
@@ -17,7 +19,7 @@ from app_utils import (
|
|
17 |
extract_frames,
|
18 |
is_image,
|
19 |
is_video,
|
20 |
-
|
21 |
overlay_text_on_frame,
|
22 |
process_frames,
|
23 |
process_video,
|
@@ -36,6 +38,18 @@ LABEL_MAP = ["left_pupil", "right_pupil"]
|
|
36 |
|
37 |
def main():
|
38 |
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
st.title("EyeDentify Playground")
|
40 |
cols = st.columns((1, 1))
|
41 |
cols[0].header("Input")
|
@@ -77,6 +91,8 @@ def main():
|
|
77 |
)
|
78 |
tv_model = st.sidebar.selectbox("Classification model", ["ResNet18", "ResNet50"], help="Supported Models")
|
79 |
|
|
|
|
|
80 |
if st.sidebar.button("Predict Diameter & Compute CAM"):
|
81 |
if uploaded_file is None:
|
82 |
st.sidebar.error("Please upload an image or video")
|
@@ -90,8 +106,7 @@ def main():
|
|
90 |
tv_model,
|
91 |
pupil_selection,
|
92 |
cam_method=CAM_METHODS[-1],
|
93 |
-
|
94 |
-
codec=None,
|
95 |
)
|
96 |
# for ff in face_frames:
|
97 |
# if ff["has_face"]:
|
@@ -115,11 +130,63 @@ def main():
|
|
115 |
|
116 |
elif is_video(file_extension):
|
117 |
output_video_path = f"{root_path}/tmp.webm"
|
118 |
-
process_video(
|
119 |
-
cols,
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
)
|
121 |
os.remove(video_path)
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
main()
|
|
|
5 |
from PIL import Image
|
6 |
from io import BytesIO
|
7 |
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
import streamlit as st
|
10 |
from PIL import ImageOps
|
11 |
from matplotlib import pyplot as plt
|
12 |
+
import altair as alt
|
13 |
|
14 |
root_path = osp.abspath(osp.join(__file__, osp.pardir))
|
15 |
sys.path.append(root_path)
|
|
|
19 |
extract_frames,
|
20 |
is_image,
|
21 |
is_video,
|
22 |
+
convert_diameter,
|
23 |
overlay_text_on_frame,
|
24 |
process_frames,
|
25 |
process_video,
|
|
|
38 |
|
39 |
def main():
|
40 |
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
|
41 |
+
st.markdown(
|
42 |
+
"""
|
43 |
+
<style>
|
44 |
+
/* Remove the top margin/padding */
|
45 |
+
.block-container {
|
46 |
+
padding-top: 0rem;
|
47 |
+
padding-bottom: 1rem; /* Adjust this as needed */
|
48 |
+
}
|
49 |
+
</style>
|
50 |
+
""",
|
51 |
+
unsafe_allow_html=True,
|
52 |
+
)
|
53 |
st.title("EyeDentify Playground")
|
54 |
cols = st.columns((1, 1))
|
55 |
cols[0].header("Input")
|
|
|
91 |
)
|
92 |
tv_model = st.sidebar.selectbox("Classification model", ["ResNet18", "ResNet50"], help="Supported Models")
|
93 |
|
94 |
+
blink_detection = st.sidebar.checkbox("Detect Blinks")
|
95 |
+
|
96 |
if st.sidebar.button("Predict Diameter & Compute CAM"):
|
97 |
if uploaded_file is None:
|
98 |
st.sidebar.error("Please upload an image or video")
|
|
|
106 |
tv_model,
|
107 |
pupil_selection,
|
108 |
cam_method=CAM_METHODS[-1],
|
109 |
+
blink_detection=blink_detection,
|
|
|
110 |
)
|
111 |
# for ff in face_frames:
|
112 |
# if ff["has_face"]:
|
|
|
130 |
|
131 |
elif is_video(file_extension):
|
132 |
output_video_path = f"{root_path}/tmp.webm"
|
133 |
+
input_frames, output_frames, predicted_diameters, face_frames = process_video(
|
134 |
+
cols,
|
135 |
+
video_frames,
|
136 |
+
tv_model,
|
137 |
+
pupil_selection,
|
138 |
+
output_video_path,
|
139 |
+
cam_method=CAM_METHODS[-1],
|
140 |
+
blink_detection=blink_detection,
|
141 |
)
|
142 |
os.remove(video_path)
|
143 |
|
144 |
+
num_columns = len(predicted_diameters)
|
145 |
+
|
146 |
+
# Create a layout for the charts
|
147 |
+
cols = st.columns(num_columns)
|
148 |
+
|
149 |
+
colors = ["#2ca02c", "#d62728", "#1f77b4", "#ff7f0e"] # Green, Red, Blue, Orange
|
150 |
+
|
151 |
+
# Iterate through categories and assign charts to columns
|
152 |
+
for i, (category, values) in enumerate(predicted_diameters.items()):
|
153 |
+
with cols[i]: # Directly use the column index
|
154 |
+
# st.subheader(category) # Add a subheader for the category
|
155 |
+
|
156 |
+
# Convert values to numeric, replacing non-numeric values with None
|
157 |
+
values = [convert_diameter(value) for value in values]
|
158 |
+
|
159 |
+
# Create a DataFrame from the values for Altair
|
160 |
+
df = pd.DataFrame(values, columns=[category])
|
161 |
+
df["Frame"] = range(1, len(values) + 1) # Create a frame column starting from 1
|
162 |
+
|
163 |
+
# Get the min and max values for y-axis limits, ignoring None
|
164 |
+
min_value = min(filter(lambda x: x is not None, values), default=None)
|
165 |
+
max_value = max(filter(lambda x: x is not None, values), default=None)
|
166 |
+
|
167 |
+
# Create an Altair chart with y-axis limits
|
168 |
+
chart = (
|
169 |
+
alt.Chart(df)
|
170 |
+
.mark_line(point=True, color=colors[i])
|
171 |
+
.encode(
|
172 |
+
x=alt.X("Frame:Q", title="Frame Number"),
|
173 |
+
y=alt.Y(
|
174 |
+
f"{category}:Q",
|
175 |
+
title="Diameter",
|
176 |
+
scale=alt.Scale(domain=[min_value, max_value]),
|
177 |
+
),
|
178 |
+
tooltip=[
|
179 |
+
alt.Tooltip("Frame:Q", title="Frame Number"),
|
180 |
+
alt.Tooltip(f"{category}:Q", title="Diameter"),
|
181 |
+
],
|
182 |
+
)
|
183 |
+
.properties(title=f"{category} - Predicted Diameters")
|
184 |
+
.configure_axis(grid=True)
|
185 |
+
)
|
186 |
+
|
187 |
+
# Display the Altair chart
|
188 |
+
st.altair_chart(chart, use_container_width=True)
|
189 |
+
|
190 |
|
191 |
if __name__ == "__main__":
|
192 |
main()
|
app_utils.py
CHANGED
@@ -110,7 +110,7 @@ def overlay_text_on_frame(frame, text, position=(16, 20)):
|
|
110 |
return cv2.putText(frame, text, position, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA)
|
111 |
|
112 |
|
113 |
-
def
|
114 |
upscale = "-"
|
115 |
upscale_method_or_model = "-"
|
116 |
if upscale == "-":
|
@@ -123,14 +123,21 @@ def process_frames(cols, input_imgs, tv_model, pupil_selection, cam_method, outp
|
|
123 |
config_file = {
|
124 |
"sr_configs": sr_configs,
|
125 |
"feature_extraction_configs": {
|
126 |
-
"blink_detection":
|
127 |
"upscale": upscale,
|
128 |
"extraction_library": "mediapipe",
|
129 |
},
|
130 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
left_pupil_model = None
|
|
|
132 |
right_pupil_model = None
|
133 |
-
|
134 |
output_frames = {}
|
135 |
input_frames = {}
|
136 |
predicted_diameters = {}
|
@@ -163,21 +170,59 @@ def process_frames(cols, input_imgs, tv_model, pupil_selection, cam_method, outp
|
|
163 |
input_frames[eye_type] = []
|
164 |
predicted_diameters[eye_type] = []
|
165 |
|
|
|
|
|
|
|
|
|
166 |
if output_path:
|
167 |
video_cols = cols[1].columns(len(input_frames.keys()))
|
168 |
|
169 |
-
video_input_placeholders = {}
|
170 |
for i, eye_type in enumerate(list(input_frames.keys())):
|
171 |
video_input_placeholders[eye_type] = video_cols[i].empty()
|
172 |
|
173 |
-
video_output_placeholders = {}
|
174 |
for i, eye_type in enumerate(list(input_frames.keys())):
|
175 |
video_output_placeholders[eye_type] = video_cols[i].empty()
|
176 |
|
177 |
-
video_predictions_placeholders = {}
|
178 |
for i, eye_type in enumerate(list(input_frames.keys())):
|
179 |
video_predictions_placeholders[eye_type] = video_cols[i].empty()
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
ds_creation = EyeDentityDatasetCreation(
|
182 |
feature_extraction_configs=config_file["feature_extraction_configs"],
|
183 |
sr_configs=config_file["sr_configs"],
|
@@ -212,17 +257,16 @@ def process_frames(cols, input_imgs, tv_model, pupil_selection, cam_method, outp
|
|
212 |
|
213 |
if ds_results is not None and "eyes" in ds_results.keys():
|
214 |
blinked = ds_results["eyes"]["blinked"]
|
215 |
-
if not
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
right_eye = right_eye.unsqueeze(0)
|
226 |
else:
|
227 |
input_img = preprocess_function(input_img)
|
228 |
input_img = input_img.unsqueeze(0)
|
@@ -235,57 +279,67 @@ def process_frames(cols, input_imgs, tv_model, pupil_selection, cam_method, outp
|
|
235 |
right_eye = input_img
|
236 |
|
237 |
for i, eye_type in enumerate(selected_eyes):
|
238 |
-
if left_eye is not None and eye_type == "left_eye":
|
239 |
-
if left_pupil_cam_extractor is None:
|
240 |
-
if tv_model == "ResNet18":
|
241 |
-
target_layer = left_pupil_model.resnet.layer4[-1].conv2
|
242 |
-
elif tv_model == "ResNet50":
|
243 |
-
target_layer = left_pupil_model.resnet.layer4[-1].conv3
|
244 |
-
else:
|
245 |
-
raise Exception(f"No target layer available for selected model: {tv_model}")
|
246 |
-
left_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
|
247 |
-
left_pupil_model,
|
248 |
-
target_layer=target_layer,
|
249 |
-
fc_layer=left_pupil_model.resnet.fc,
|
250 |
-
input_shape=left_eye.shape,
|
251 |
-
)
|
252 |
-
output = left_pupil_model(left_eye)
|
253 |
-
predicted_diameter = output[0].item()
|
254 |
-
act_maps = left_pupil_cam_extractor(0, output)
|
255 |
-
activation_map = act_maps[0] if len(act_maps) == 1 else left_pupil_cam_extractor.fuse_cams(act_maps)
|
256 |
-
input_image_pil = to_pil_image(left_eye.squeeze(0))
|
257 |
-
elif right_eye is not None and eye_type == "right_eye":
|
258 |
-
if right_pupil_cam_extractor is None:
|
259 |
-
if tv_model == "ResNet18":
|
260 |
-
target_layer = right_pupil_model.resnet.layer4[-1].conv2
|
261 |
-
elif tv_model == "ResNet50":
|
262 |
-
target_layer = right_pupil_model.resnet.layer4[-1].conv3
|
263 |
-
else:
|
264 |
-
raise Exception(f"No target layer available for selected model: {tv_model}")
|
265 |
-
right_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
|
266 |
-
right_pupil_model,
|
267 |
-
target_layer=target_layer,
|
268 |
-
fc_layer=right_pupil_model.resnet.fc,
|
269 |
-
input_shape=right_eye.shape,
|
270 |
-
)
|
271 |
-
output = right_pupil_model(right_eye)
|
272 |
-
predicted_diameter = output[0].item()
|
273 |
-
act_maps = right_pupil_cam_extractor(0, output)
|
274 |
-
activation_map = act_maps[0] if len(act_maps) == 1 else right_pupil_cam_extractor.fuse_cams(act_maps)
|
275 |
-
input_image_pil = to_pil_image(right_eye.squeeze(0))
|
276 |
|
277 |
if blinked:
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
# Create CAM overlay
|
284 |
activation_map_pil = to_pil_image(activation_map, mode="F")
|
285 |
result = overlay_mask(input_image_pil, activation_map_pil, alpha=0.5)
|
286 |
-
|
287 |
-
|
288 |
-
output_img_np = np.array(result)
|
289 |
|
290 |
# Add frame and predicted diameter to lists
|
291 |
input_frames[eye_type].append(input_img_np)
|
@@ -295,7 +349,10 @@ def process_frames(cols, input_imgs, tv_model, pupil_selection, cam_method, outp
|
|
295 |
if output_path:
|
296 |
height, width, _ = output_img_np.shape
|
297 |
frame = np.zeros((height, width, 3), dtype=np.uint8)
|
298 |
-
|
|
|
|
|
|
|
299 |
frame = overlay_text_on_frame(frame, text)
|
300 |
|
301 |
video_input_placeholders[eye_type].image(input_img_np, use_column_width=True)
|
@@ -385,7 +442,10 @@ def show_pred_text_frames(output_frames, output_path, predicted_diameters, codec
|
|
385 |
|
386 |
for diameter in predicted_diameters[eye_type]:
|
387 |
frame = np.zeros((height, width, 3), dtype=np.uint8)
|
388 |
-
|
|
|
|
|
|
|
389 |
frame = overlay_text_on_frame(frame, text)
|
390 |
out.write(frame)
|
391 |
out.release()
|
@@ -398,7 +458,7 @@ def show_pred_text_frames(output_frames, output_path, predicted_diameters, codec
|
|
398 |
os.remove(output_path)
|
399 |
|
400 |
|
401 |
-
def process_video(cols, video_frames, tv_model, pupil_selection, output_path, cam_method):
|
402 |
|
403 |
resized_frames = []
|
404 |
for i, frame in enumerate(video_frames):
|
@@ -408,4 +468,16 @@ def process_video(cols, video_frames, tv_model, pupil_selection, output_path, ca
|
|
408 |
file_format = output_path.split(".")[-1]
|
409 |
codec, extension = get_codec_and_extension(file_format)
|
410 |
|
411 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
return cv2.putText(frame, text, position, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA)
|
111 |
|
112 |
|
113 |
+
def get_configs(blink_detection=False):
|
114 |
upscale = "-"
|
115 |
upscale_method_or_model = "-"
|
116 |
if upscale == "-":
|
|
|
123 |
config_file = {
|
124 |
"sr_configs": sr_configs,
|
125 |
"feature_extraction_configs": {
|
126 |
+
"blink_detection": blink_detection,
|
127 |
"upscale": upscale,
|
128 |
"extraction_library": "mediapipe",
|
129 |
},
|
130 |
}
|
131 |
+
|
132 |
+
return config_file
|
133 |
+
|
134 |
+
|
135 |
+
def setup(cols, pupil_selection, tv_model, output_path):
|
136 |
+
|
137 |
left_pupil_model = None
|
138 |
+
left_pupil_cam_extractor = None
|
139 |
right_pupil_model = None
|
140 |
+
right_pupil_cam_extractor = None
|
141 |
output_frames = {}
|
142 |
input_frames = {}
|
143 |
predicted_diameters = {}
|
|
|
170 |
input_frames[eye_type] = []
|
171 |
predicted_diameters[eye_type] = []
|
172 |
|
173 |
+
video_input_placeholders = {}
|
174 |
+
video_output_placeholders = {}
|
175 |
+
video_predictions_placeholders = {}
|
176 |
+
|
177 |
if output_path:
|
178 |
video_cols = cols[1].columns(len(input_frames.keys()))
|
179 |
|
|
|
180 |
for i, eye_type in enumerate(list(input_frames.keys())):
|
181 |
video_input_placeholders[eye_type] = video_cols[i].empty()
|
182 |
|
|
|
183 |
for i, eye_type in enumerate(list(input_frames.keys())):
|
184 |
video_output_placeholders[eye_type] = video_cols[i].empty()
|
185 |
|
|
|
186 |
for i, eye_type in enumerate(list(input_frames.keys())):
|
187 |
video_predictions_placeholders[eye_type] = video_cols[i].empty()
|
188 |
|
189 |
+
return (
|
190 |
+
selected_eyes,
|
191 |
+
input_frames,
|
192 |
+
output_frames,
|
193 |
+
predicted_diameters,
|
194 |
+
video_input_placeholders,
|
195 |
+
video_output_placeholders,
|
196 |
+
video_predictions_placeholders,
|
197 |
+
left_pupil_model,
|
198 |
+
left_pupil_cam_extractor,
|
199 |
+
right_pupil_model,
|
200 |
+
right_pupil_cam_extractor,
|
201 |
+
)
|
202 |
+
|
203 |
+
|
204 |
+
def process_frames(
|
205 |
+
cols, input_imgs, tv_model, pupil_selection, cam_method, output_path=None, codec=None, blink_detection=False
|
206 |
+
):
|
207 |
+
|
208 |
+
config_file = get_configs(blink_detection)
|
209 |
+
|
210 |
+
face_frames = []
|
211 |
+
|
212 |
+
(
|
213 |
+
selected_eyes,
|
214 |
+
input_frames,
|
215 |
+
output_frames,
|
216 |
+
predicted_diameters,
|
217 |
+
video_input_placeholders,
|
218 |
+
video_output_placeholders,
|
219 |
+
video_predictions_placeholders,
|
220 |
+
left_pupil_model,
|
221 |
+
left_pupil_cam_extractor,
|
222 |
+
right_pupil_model,
|
223 |
+
right_pupil_cam_extractor,
|
224 |
+
) = setup(cols, pupil_selection, tv_model, output_path)
|
225 |
+
|
226 |
ds_creation = EyeDentityDatasetCreation(
|
227 |
feature_extraction_configs=config_file["feature_extraction_configs"],
|
228 |
sr_configs=config_file["sr_configs"],
|
|
|
257 |
|
258 |
if ds_results is not None and "eyes" in ds_results.keys():
|
259 |
blinked = ds_results["eyes"]["blinked"]
|
260 |
+
if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
|
261 |
+
left_eye = ds_results["eyes"]["left_eye"]
|
262 |
+
left_eye = to_pil_image(left_eye).convert("RGB")
|
263 |
+
left_eye = preprocess_function(left_eye)
|
264 |
+
left_eye = left_eye.unsqueeze(0)
|
265 |
+
if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None:
|
266 |
+
right_eye = ds_results["eyes"]["right_eye"]
|
267 |
+
right_eye = to_pil_image(right_eye).convert("RGB")
|
268 |
+
right_eye = preprocess_function(right_eye)
|
269 |
+
right_eye = right_eye.unsqueeze(0)
|
|
|
270 |
else:
|
271 |
input_img = preprocess_function(input_img)
|
272 |
input_img = input_img.unsqueeze(0)
|
|
|
279 |
right_eye = input_img
|
280 |
|
281 |
for i, eye_type in enumerate(selected_eyes):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
if blinked:
|
284 |
+
|
285 |
+
if left_eye is not None and eye_type == "left_eye":
|
286 |
+
_, height, width = left_eye.squeeze(0).shape
|
287 |
+
input_image_pil = to_pil_image(left_eye.squeeze(0))
|
288 |
+
elif right_eye is not None and eye_type == "right_eye":
|
289 |
+
_, height, width = right_eye.squeeze(0).shape
|
290 |
+
input_image_pil = to_pil_image(right_eye.squeeze(0))
|
291 |
+
|
292 |
+
input_img_np = np.array(input_image_pil)
|
293 |
+
zeros_img = to_pil_image(np.zeros((height, width, 3), dtype=np.uint8))
|
294 |
+
output_img_np = overlay_text_on_frame(np.array(zeros_img), "blink")
|
295 |
+
predicted_diameter = "blink"
|
296 |
else:
|
297 |
+
if left_eye is not None and eye_type == "left_eye":
|
298 |
+
if left_pupil_cam_extractor is None:
|
299 |
+
if tv_model == "ResNet18":
|
300 |
+
target_layer = left_pupil_model.resnet.layer4[-1].conv2
|
301 |
+
elif tv_model == "ResNet50":
|
302 |
+
target_layer = left_pupil_model.resnet.layer4[-1].conv3
|
303 |
+
else:
|
304 |
+
raise Exception(f"No target layer available for selected model: {tv_model}")
|
305 |
+
left_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
|
306 |
+
left_pupil_model,
|
307 |
+
target_layer=target_layer,
|
308 |
+
fc_layer=left_pupil_model.resnet.fc,
|
309 |
+
input_shape=left_eye.shape,
|
310 |
+
)
|
311 |
+
output = left_pupil_model(left_eye)
|
312 |
+
predicted_diameter = output[0].item()
|
313 |
+
act_maps = left_pupil_cam_extractor(0, output)
|
314 |
+
activation_map = act_maps[0] if len(act_maps) == 1 else left_pupil_cam_extractor.fuse_cams(act_maps)
|
315 |
+
input_image_pil = to_pil_image(left_eye.squeeze(0))
|
316 |
+
elif right_eye is not None and eye_type == "right_eye":
|
317 |
+
if right_pupil_cam_extractor is None:
|
318 |
+
if tv_model == "ResNet18":
|
319 |
+
target_layer = right_pupil_model.resnet.layer4[-1].conv2
|
320 |
+
elif tv_model == "ResNet50":
|
321 |
+
target_layer = right_pupil_model.resnet.layer4[-1].conv3
|
322 |
+
else:
|
323 |
+
raise Exception(f"No target layer available for selected model: {tv_model}")
|
324 |
+
right_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
|
325 |
+
right_pupil_model,
|
326 |
+
target_layer=target_layer,
|
327 |
+
fc_layer=right_pupil_model.resnet.fc,
|
328 |
+
input_shape=right_eye.shape,
|
329 |
+
)
|
330 |
+
output = right_pupil_model(right_eye)
|
331 |
+
predicted_diameter = output[0].item()
|
332 |
+
act_maps = right_pupil_cam_extractor(0, output)
|
333 |
+
activation_map = (
|
334 |
+
act_maps[0] if len(act_maps) == 1 else right_pupil_cam_extractor.fuse_cams(act_maps)
|
335 |
+
)
|
336 |
+
input_image_pil = to_pil_image(right_eye.squeeze(0))
|
337 |
+
|
338 |
# Create CAM overlay
|
339 |
activation_map_pil = to_pil_image(activation_map, mode="F")
|
340 |
result = overlay_mask(input_image_pil, activation_map_pil, alpha=0.5)
|
341 |
+
input_img_np = np.array(input_image_pil)
|
342 |
+
output_img_np = np.array(result)
|
|
|
343 |
|
344 |
# Add frame and predicted diameter to lists
|
345 |
input_frames[eye_type].append(input_img_np)
|
|
|
349 |
if output_path:
|
350 |
height, width, _ = output_img_np.shape
|
351 |
frame = np.zeros((height, width, 3), dtype=np.uint8)
|
352 |
+
if not isinstance(predicted_diameter, str):
|
353 |
+
text = f"{predicted_diameter:.2f}"
|
354 |
+
else:
|
355 |
+
text = predicted_diameter
|
356 |
frame = overlay_text_on_frame(frame, text)
|
357 |
|
358 |
video_input_placeholders[eye_type].image(input_img_np, use_column_width=True)
|
|
|
442 |
|
443 |
for diameter in predicted_diameters[eye_type]:
|
444 |
frame = np.zeros((height, width, 3), dtype=np.uint8)
|
445 |
+
if not isinstance(diameter, str):
|
446 |
+
text = f"{diameter:.2f}"
|
447 |
+
else:
|
448 |
+
text = diameter
|
449 |
frame = overlay_text_on_frame(frame, text)
|
450 |
out.write(frame)
|
451 |
out.release()
|
|
|
458 |
os.remove(output_path)
|
459 |
|
460 |
|
461 |
+
def process_video(cols, video_frames, tv_model, pupil_selection, output_path, cam_method, blink_detection=False):
|
462 |
|
463 |
resized_frames = []
|
464 |
for i, frame in enumerate(video_frames):
|
|
|
468 |
file_format = output_path.split(".")[-1]
|
469 |
codec, extension = get_codec_and_extension(file_format)
|
470 |
|
471 |
+
input_frames, output_frames, predicted_diameters, face_frames = process_frames(
|
472 |
+
cols, resized_frames, tv_model, pupil_selection, cam_method, output_path, codec, blink_detection
|
473 |
+
)
|
474 |
+
|
475 |
+
return input_frames, output_frames, predicted_diameters, face_frames
|
476 |
+
|
477 |
+
|
478 |
+
# Function to convert string values to float or None
|
479 |
+
def convert_diameter(value):
|
480 |
+
try:
|
481 |
+
return float(value)
|
482 |
+
except (ValueError, TypeError):
|
483 |
+
return None # Return None if conversion fails
|
image.py
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
import numpy as np
|
3 |
-
|
4 |
-
# Load the original face image
|
5 |
-
face_image = cv2.imread("path_to_face_image.jpg")
|
6 |
-
|
7 |
-
# Suppose CAM_left and CAM_right are the CAM results for the eyes (each 32x64)
|
8 |
-
CAM_left = cv2.imread("path_to_CAM_left.jpg") # or generated by your model
|
9 |
-
CAM_right = cv2.imread("path_to_CAM_right.jpg") # or generated by your model
|
10 |
-
|
11 |
-
# Example bounding boxes for the left and right eye
|
12 |
-
left_eye_bbox = (x_left, y_left, width_left, height_left)
|
13 |
-
right_eye_bbox = (x_right, y_right, width_right, height_right)
|
14 |
-
|
15 |
-
# Resize CAM images if needed (they should be 32x64, but resize to match bbox size)
|
16 |
-
CAM_left_resized = cv2.resize(CAM_left, (width_left, height_left))
|
17 |
-
CAM_right_resized = cv2.resize(CAM_right, (width_right, height_right))
|
18 |
-
|
19 |
-
# Create a copy of the face image to overlay the CAM results
|
20 |
-
face_with_CAM = face_image.copy()
|
21 |
-
|
22 |
-
# Overlay left eye CAM
|
23 |
-
face_with_CAM[y_left : y_left + height_left, x_left : x_left + width_left] = CAM_left_resized
|
24 |
-
|
25 |
-
# Overlay right eye CAM
|
26 |
-
face_with_CAM[y_right : y_right + height_right, x_right : x_right + width_right] = CAM_right_resized
|
27 |
-
|
28 |
-
# Save or display the result
|
29 |
-
cv2.imwrite("face_with_CAM_overlay.jpg", face_with_CAM)
|
30 |
-
cv2.imshow("Face with CAM Overlay", face_with_CAM)
|
31 |
-
cv2.waitKey(0)
|
32 |
-
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
registrations/models.py
CHANGED
@@ -11,38 +11,6 @@ sys.path.append(root_path)
|
|
11 |
# ============================= ResNets =============================
|
12 |
|
13 |
|
14 |
-
# @MODEL_REGISTRY.register()
|
15 |
-
# class ResNet18(nn.Module):
|
16 |
-
# def __init__(self, model_args):
|
17 |
-
# super(ResNet18, self).__init__()
|
18 |
-
# self.num_classes = model_args.get("num_classes", 1)
|
19 |
-
# self.resnet = models.resnet18(weights=None, num_classes=self.num_classes)
|
20 |
-
|
21 |
-
# def forward(self, x, masks=None):
|
22 |
-
# return self.resnet(x)
|
23 |
-
|
24 |
-
|
25 |
-
# @MODEL_REGISTRY.register()
|
26 |
-
# class ResNet18(nn.Module):
|
27 |
-
# def __init__(self, model_args):
|
28 |
-
# super(ResNet18, self).__init__()
|
29 |
-
# self.num_classes = model_args.get("num_classes", 1)
|
30 |
-
# self.resnet = models.resnet18(weights=None, num_classes=self.num_classes)
|
31 |
-
|
32 |
-
# def forward(self, x, masks=None):
|
33 |
-
# # Calculate the padding dynamically based on the input size
|
34 |
-
# height, width = x.shape[2], x.shape[3]
|
35 |
-
# pad_height = max(0, (224 - height) // 2)
|
36 |
-
# pad_width = max(0, (224 - width) // 2)
|
37 |
-
|
38 |
-
# # Apply padding
|
39 |
-
# x = F.pad(
|
40 |
-
# x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0
|
41 |
-
# )
|
42 |
-
# x = self.resnet(x)
|
43 |
-
# return x
|
44 |
-
|
45 |
-
|
46 |
@MODEL_REGISTRY.register()
|
47 |
class ResNet18(nn.Module):
|
48 |
def __init__(self, model_args):
|
@@ -58,46 +26,12 @@ class ResNet18(nn.Module):
|
|
58 |
pad_width = max(0, (224 - width) // 2)
|
59 |
|
60 |
# Apply padding
|
61 |
-
x = F.pad(
|
62 |
-
x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0
|
63 |
-
)
|
64 |
x = self.resnet(x)
|
65 |
x = self.regression_head(x)
|
66 |
return x
|
67 |
|
68 |
|
69 |
-
# @MODEL_REGISTRY.register()
|
70 |
-
# class ResNet50(nn.Module):
|
71 |
-
# def __init__(self, model_args):
|
72 |
-
# super(ResNet50, self).__init__()
|
73 |
-
# self.num_classes = model_args.get("num_classes", 1)
|
74 |
-
# self.resnet = models.resnet50(weights=None, num_classes=self.num_classes)
|
75 |
-
|
76 |
-
# def forward(self, x, masks=None):
|
77 |
-
# return self.resnet(x)
|
78 |
-
|
79 |
-
|
80 |
-
# @MODEL_REGISTRY.register()
|
81 |
-
# class ResNet50(nn.Module):
|
82 |
-
# def __init__(self, model_args):
|
83 |
-
# super(ResNet50, self).__init__()
|
84 |
-
# self.num_classes = model_args.get("num_classes", 1)
|
85 |
-
# self.resnet = models.resnet50(weights=None, num_classes=self.num_classes)
|
86 |
-
|
87 |
-
# def forward(self, x, masks=None):
|
88 |
-
# # Calculate the padding dynamically based on the input size
|
89 |
-
# height, width = x.shape[2], x.shape[3]
|
90 |
-
# pad_height = max(0, (224 - height) // 2)
|
91 |
-
# pad_width = max(0, (224 - width) // 2)
|
92 |
-
|
93 |
-
# # Apply padding
|
94 |
-
# x = F.pad(
|
95 |
-
# x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0
|
96 |
-
# )
|
97 |
-
# x = self.resnet(x)
|
98 |
-
# return x
|
99 |
-
|
100 |
-
|
101 |
@MODEL_REGISTRY.register()
|
102 |
class ResNet50(nn.Module):
|
103 |
def __init__(self, model_args):
|
@@ -113,9 +47,7 @@ class ResNet50(nn.Module):
|
|
113 |
pad_width = max(0, (224 - width) // 2)
|
114 |
|
115 |
# Apply padding
|
116 |
-
x = F.pad(
|
117 |
-
x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0
|
118 |
-
)
|
119 |
x = self.resnet(x)
|
120 |
x = self.regression_head(x)
|
121 |
return x
|
|
|
11 |
# ============================= ResNets =============================
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
@MODEL_REGISTRY.register()
|
15 |
class ResNet18(nn.Module):
|
16 |
def __init__(self, model_args):
|
|
|
26 |
pad_width = max(0, (224 - width) // 2)
|
27 |
|
28 |
# Apply padding
|
29 |
+
x = F.pad(x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0)
|
|
|
|
|
30 |
x = self.resnet(x)
|
31 |
x = self.regression_head(x)
|
32 |
return x
|
33 |
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
@MODEL_REGISTRY.register()
|
36 |
class ResNet50(nn.Module):
|
37 |
def __init__(self, model_args):
|
|
|
47 |
pad_width = max(0, (224 - width) // 2)
|
48 |
|
49 |
# Apply padding
|
50 |
+
x = F.pad(x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0)
|
|
|
|
|
51 |
x = self.resnet(x)
|
52 |
x = self.regression_head(x)
|
53 |
return x
|
video.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
import torch
|
3 |
-
|
4 |
-
# Load the video
|
5 |
-
video_path = "path_to_video.mp4"
|
6 |
-
cap = cv2.VideoCapture(video_path)
|
7 |
-
|
8 |
-
# Video properties
|
9 |
-
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
10 |
-
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
11 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
12 |
-
|
13 |
-
# Create a VideoWriter object for the output video
|
14 |
-
out = cv2.VideoWriter("output_with_CAM.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (frame_width, frame_height))
|
15 |
-
|
16 |
-
# Process each frame
|
17 |
-
while True:
|
18 |
-
ret, frame = cap.read()
|
19 |
-
if not ret:
|
20 |
-
break # End of the video
|
21 |
-
|
22 |
-
# Detect landmarks for left and right eye bounding boxes (example)
|
23 |
-
left_eye_bbox = (x_left, y_left, width_left, height_left)
|
24 |
-
right_eye_bbox = (x_right, y_right, width_right, height_right)
|
25 |
-
|
26 |
-
# Crop the eyes
|
27 |
-
left_eye = frame[y_left : y_left + height_left, x_left : x_left + width_left]
|
28 |
-
right_eye = frame[y_right : y_right + height_right, x_right : x_right + width_right]
|
29 |
-
|
30 |
-
# Generate CAMs for left and right eyes
|
31 |
-
CAM_left = generate_CAM(left_eye) # Use your model here
|
32 |
-
CAM_right = generate_CAM(right_eye) # Use your model here
|
33 |
-
|
34 |
-
# Resize CAMs if necessary
|
35 |
-
CAM_left_resized = cv2.resize(CAM_left, (width_left, height_left))
|
36 |
-
CAM_right_resized = cv2.resize(CAM_right, (width_right, height_right))
|
37 |
-
|
38 |
-
# Overlay the CAMs onto the original frame
|
39 |
-
frame[y_left : y_left + height_left, x_left : x_left + width_left] = CAM_left_resized
|
40 |
-
frame[y_right : y_right + height_right, x_right : x_right + width_right] = CAM_right_resized
|
41 |
-
|
42 |
-
# Write the processed frame to the output video
|
43 |
-
out.write(frame)
|
44 |
-
|
45 |
-
# Release resources
|
46 |
-
cap.release()
|
47 |
-
out.release()
|
48 |
-
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|