Spaces:
Running
Running
vijul.shah
commited on
Commit
·
4b41e60
1
Parent(s):
9acc552
Frames Processing Optimized
Browse files- app.py +17 -6
- app_old.py +0 -434
- app_utils.py +64 -27
app.py
CHANGED
@@ -56,7 +56,7 @@ def main():
|
|
56 |
input_img = resize_frame(input_img, max_width=640, max_height=480)
|
57 |
input_img = resize_frame(input_img, max_width=640, max_height=480)
|
58 |
cols[0].image(input_img, use_column_width=True)
|
59 |
-
|
60 |
|
61 |
elif is_video(file_extension):
|
62 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
@@ -64,6 +64,12 @@ def main():
|
|
64 |
video_path = tfile.name
|
65 |
video_frames = extract_frames(video_path)
|
66 |
cols[0].video(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
st.sidebar.title("Setup")
|
69 |
pupil_selection = st.sidebar.selectbox(
|
@@ -79,11 +85,17 @@ def main():
|
|
79 |
|
80 |
if is_image(file_extension):
|
81 |
input_frames, output_frames, predicted_diameters, face_frames = process_frames(
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
84 |
-
for ff in face_frames:
|
85 |
-
|
86 |
-
|
87 |
|
88 |
input_frames_keys = input_frames.keys()
|
89 |
video_cols = cols[1].columns(len(input_frames_keys))
|
@@ -106,7 +118,6 @@ def main():
|
|
106 |
process_video(
|
107 |
cols, video_frames, tv_model, pupil_selection, output_video_path, cam_method=CAM_METHODS[-1]
|
108 |
)
|
109 |
-
|
110 |
os.remove(video_path)
|
111 |
|
112 |
|
|
|
56 |
input_img = resize_frame(input_img, max_width=640, max_height=480)
|
57 |
input_img = resize_frame(input_img, max_width=640, max_height=480)
|
58 |
cols[0].image(input_img, use_column_width=True)
|
59 |
+
st.session_state.total_frames = 1
|
60 |
|
61 |
elif is_video(file_extension):
|
62 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
|
|
64 |
video_path = tfile.name
|
65 |
video_frames = extract_frames(video_path)
|
66 |
cols[0].video(video_path)
|
67 |
+
st.session_state.total_frames = len(video_frames)
|
68 |
+
|
69 |
+
st.session_state.current_frame = 0
|
70 |
+
st.session_state.frame_placeholder = cols[0].empty()
|
71 |
+
txt = f"<p style='font-size:20px;'> Number of Frames Processed: <strong>{st.session_state.current_frame} / {st.session_state.total_frames}</strong> </p>"
|
72 |
+
st.session_state.frame_placeholder.markdown(txt, unsafe_allow_html=True)
|
73 |
|
74 |
st.sidebar.title("Setup")
|
75 |
pupil_selection = st.sidebar.selectbox(
|
|
|
85 |
|
86 |
if is_image(file_extension):
|
87 |
input_frames, output_frames, predicted_diameters, face_frames = process_frames(
|
88 |
+
cols,
|
89 |
+
[input_img],
|
90 |
+
tv_model,
|
91 |
+
pupil_selection,
|
92 |
+
cam_method=CAM_METHODS[-1],
|
93 |
+
output_path=None,
|
94 |
+
codec=None,
|
95 |
)
|
96 |
+
# for ff in face_frames:
|
97 |
+
# if ff["has_face"]:
|
98 |
+
# cols[1].image(face_frames[0]["img"], use_column_width=True)
|
99 |
|
100 |
input_frames_keys = input_frames.keys()
|
101 |
video_cols = cols[1].columns(len(input_frames_keys))
|
|
|
118 |
process_video(
|
119 |
cols, video_frames, tv_model, pupil_selection, output_video_path, cam_method=CAM_METHODS[-1]
|
120 |
)
|
|
|
121 |
os.remove(video_path)
|
122 |
|
123 |
|
app_old.py
DELETED
@@ -1,434 +0,0 @@
|
|
1 |
-
# takn from: https://huggingface.co/spaces/frgfm/torch-cam/blob/main/app.py
|
2 |
-
|
3 |
-
# streamlit run app.py
|
4 |
-
from io import BytesIO
|
5 |
-
import os
|
6 |
-
import sys
|
7 |
-
import cv2
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
import numpy as np
|
10 |
-
import streamlit as st
|
11 |
-
import torch
|
12 |
-
import tempfile
|
13 |
-
from PIL import Image
|
14 |
-
from torchvision import models
|
15 |
-
from torchvision.transforms.functional import normalize, resize, to_pil_image, to_tensor
|
16 |
-
from torchvision import transforms
|
17 |
-
|
18 |
-
from torchcam.methods import CAM
|
19 |
-
from torchcam import methods as torchcam_methods
|
20 |
-
from torchcam.utils import overlay_mask
|
21 |
-
import os.path as osp
|
22 |
-
|
23 |
-
root_path = osp.abspath(osp.join(__file__, osp.pardir))
|
24 |
-
sys.path.append(root_path)
|
25 |
-
|
26 |
-
from preprocessing.dataset_creation import EyeDentityDatasetCreation
|
27 |
-
from utils import get_model
|
28 |
-
from registry_utils import import_registered_modules
|
29 |
-
|
30 |
-
import_registered_modules()
|
31 |
-
# from torchcam.methods._utils import locate_candidate_layer
|
32 |
-
|
33 |
-
CAM_METHODS = [
|
34 |
-
"CAM",
|
35 |
-
# "GradCAM",
|
36 |
-
# "GradCAMpp",
|
37 |
-
# "SmoothGradCAMpp",
|
38 |
-
# "ScoreCAM",
|
39 |
-
# "SSCAM",
|
40 |
-
# "ISCAM",
|
41 |
-
# "XGradCAM",
|
42 |
-
# "LayerCAM",
|
43 |
-
]
|
44 |
-
TV_MODELS = [
|
45 |
-
"ResNet18",
|
46 |
-
"ResNet50",
|
47 |
-
]
|
48 |
-
SR_METHODS = ["GFPGAN", "CodeFormer", "RealESRGAN", "SRResNet", "HAT"]
|
49 |
-
UPSCALE = [2, 4]
|
50 |
-
UPSCALE_METHODS = ["BILINEAR", "BICUBIC"]
|
51 |
-
LABEL_MAP = ["left_pupil", "right_pupil"]
|
52 |
-
|
53 |
-
|
54 |
-
@torch.no_grad()
|
55 |
-
def _load_model(model_configs, device="cpu"):
|
56 |
-
model_path = os.path.join(root_path, model_configs["model_path"])
|
57 |
-
model_configs.pop("model_path")
|
58 |
-
model_dict = torch.load(model_path, map_location=device)
|
59 |
-
model = get_model(model_configs=model_configs)
|
60 |
-
model.load_state_dict(model_dict)
|
61 |
-
model = model.to(device)
|
62 |
-
model = model.eval()
|
63 |
-
return model
|
64 |
-
|
65 |
-
|
66 |
-
def extract_frames(video_path):
|
67 |
-
vidcap = cv2.VideoCapture(video_path)
|
68 |
-
frames = []
|
69 |
-
success, image = vidcap.read()
|
70 |
-
count = 0
|
71 |
-
while success:
|
72 |
-
# Convert the frame to RGB (cv2 uses BGR by default)
|
73 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
74 |
-
frames.append(image_rgb)
|
75 |
-
success, image = vidcap.read()
|
76 |
-
count += 1
|
77 |
-
vidcap.release()
|
78 |
-
return frames
|
79 |
-
|
80 |
-
|
81 |
-
# Function to check if a file is an image
|
82 |
-
def is_image(file_extension):
|
83 |
-
return file_extension.lower() in ["png", "jpeg", "jpg"]
|
84 |
-
|
85 |
-
|
86 |
-
# Function to check if a file is a video
|
87 |
-
def is_video(file_extension):
|
88 |
-
return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"]
|
89 |
-
|
90 |
-
|
91 |
-
def resize_frame(frame, max_width, max_height):
|
92 |
-
image = Image.fromarray(frame)
|
93 |
-
original_size = image.size
|
94 |
-
|
95 |
-
# Resize the frame similarly to the image resizing logic
|
96 |
-
if original_size[0] == original_size[1] and original_size[0] >= 256:
|
97 |
-
max_size = (256, 256)
|
98 |
-
else:
|
99 |
-
max_size = list(original_size)
|
100 |
-
if original_size[0] >= 640:
|
101 |
-
max_size[0] = 640
|
102 |
-
elif original_size[0] < 64:
|
103 |
-
max_size[0] = 64
|
104 |
-
if original_size[1] >= 480:
|
105 |
-
max_size[1] = 480
|
106 |
-
elif original_size[1] < 32:
|
107 |
-
max_size[1] = 32
|
108 |
-
|
109 |
-
image.thumbnail(max_size)
|
110 |
-
return image
|
111 |
-
|
112 |
-
|
113 |
-
def main():
|
114 |
-
# Wide mode
|
115 |
-
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
|
116 |
-
|
117 |
-
# Designing the interface
|
118 |
-
st.title("EyeDentify Playground")
|
119 |
-
# For newline
|
120 |
-
st.write("\n")
|
121 |
-
# Set the columns
|
122 |
-
cols = st.columns((1, 1))
|
123 |
-
# cols = st.columns((1, 1, 1))
|
124 |
-
cols[0].header("Input image")
|
125 |
-
# cols[1].header("Raw CAM")
|
126 |
-
cols[-1].header("Prediction")
|
127 |
-
|
128 |
-
# Sidebar
|
129 |
-
# File selection
|
130 |
-
st.sidebar.title("Upload Face or Eye")
|
131 |
-
# Disabling warning
|
132 |
-
st.set_option("deprecation.showfileUploaderEncoding", False)
|
133 |
-
# Choose your own image
|
134 |
-
uploaded_file = st.sidebar.file_uploader(
|
135 |
-
"Upload Image or Video", type=["png", "jpeg", "jpg", "mp4", "avi", "mov", "mkv", "webm"]
|
136 |
-
)
|
137 |
-
if uploaded_file is not None:
|
138 |
-
# Get file extension
|
139 |
-
file_extension = uploaded_file.name.split(".")[-1]
|
140 |
-
input_imgs = []
|
141 |
-
|
142 |
-
if is_image(file_extension):
|
143 |
-
input_img = Image.open(BytesIO(uploaded_file.read()), mode="r").convert("RGB")
|
144 |
-
# print("input_img before = ", input_img.size)
|
145 |
-
max_size = [input_img.size[0], input_img.size[1]]
|
146 |
-
cols[0].text(f"Input Image: {max_size[0]} x {max_size[1]}")
|
147 |
-
if input_img.size[0] == input_img.size[1] and input_img.size[0] >= 256:
|
148 |
-
max_size[0] = 256
|
149 |
-
max_size[1] = 256
|
150 |
-
else:
|
151 |
-
if input_img.size[0] >= 640:
|
152 |
-
max_size[0] = 640
|
153 |
-
elif input_img.size[0] < 64:
|
154 |
-
max_size[0] = 64
|
155 |
-
if input_img.size[1] >= 480:
|
156 |
-
max_size[1] = 480
|
157 |
-
elif input_img.size[1] < 32:
|
158 |
-
max_size[1] = 32
|
159 |
-
input_img.thumbnail((max_size[0], max_size[1])) # Bicubic resampling
|
160 |
-
input_imgs.append(input_img)
|
161 |
-
# print("input_img after = ", input_img.size)
|
162 |
-
# cols[0].image(input_img)
|
163 |
-
fig0, axs0 = plt.subplots(1, 1, figsize=(10, 10))
|
164 |
-
# Display the input image
|
165 |
-
axs0.imshow(input_imgs[0])
|
166 |
-
axs0.axis("off")
|
167 |
-
axs0.set_title("Input Image")
|
168 |
-
|
169 |
-
# Display the plot
|
170 |
-
cols[0].pyplot(fig0)
|
171 |
-
cols[0].text(f"Input Image Resized: {max_size[0]} x {max_size[1]}")
|
172 |
-
|
173 |
-
# TODO: show the face features extracted from the image under 'input image' column
|
174 |
-
elif is_video(file_extension):
|
175 |
-
tfile = tempfile.NamedTemporaryFile(delete=False)
|
176 |
-
tfile.write(uploaded_file.read())
|
177 |
-
video_path = tfile.name
|
178 |
-
|
179 |
-
# Extract frames from the video
|
180 |
-
frames = extract_frames(video_path)
|
181 |
-
print(f"Extracted {len(frames)} frames from the video")
|
182 |
-
|
183 |
-
# Process the frames
|
184 |
-
for i, frame in enumerate(frames):
|
185 |
-
input_imgs.append(resize_frame(frame, 640, 480))
|
186 |
-
|
187 |
-
os.remove(video_path)
|
188 |
-
|
189 |
-
fig0, axs0 = plt.subplots(1, 1, figsize=(10, 10))
|
190 |
-
# Display the input image
|
191 |
-
axs0.imshow(input_imgs[0])
|
192 |
-
axs0.axis("off")
|
193 |
-
axs0.set_title("Input Image")
|
194 |
-
|
195 |
-
# Display the plot
|
196 |
-
cols[0].pyplot(fig0)
|
197 |
-
# cols[0].text(f"Input Image Resized: {max_size[0]} x {max_size[1]}")
|
198 |
-
|
199 |
-
st.sidebar.title("Setup")
|
200 |
-
|
201 |
-
# Upscale selection
|
202 |
-
upscale = "-"
|
203 |
-
# upscale = st.sidebar.selectbox(
|
204 |
-
# "Upscale",
|
205 |
-
# ["-"] + UPSCALE,
|
206 |
-
# help="Upscale the uploaded image 2 or 4 times. Keep blank for no upscaling",
|
207 |
-
# )
|
208 |
-
|
209 |
-
# Upscale method selection
|
210 |
-
if upscale != "-":
|
211 |
-
upscale_method_or_model = st.sidebar.selectbox(
|
212 |
-
"Upscale Method / Model",
|
213 |
-
UPSCALE_METHODS + SR_METHODS,
|
214 |
-
help="Select a method or model to upscale the uploaded image",
|
215 |
-
)
|
216 |
-
else:
|
217 |
-
upscale_method_or_model = None
|
218 |
-
|
219 |
-
# Pupil selection
|
220 |
-
pupil_selection = st.sidebar.selectbox(
|
221 |
-
"Pupil Selection",
|
222 |
-
["-"] + LABEL_MAP,
|
223 |
-
help="Select left or right pupil OR keep blank for both pupil diameter estimation",
|
224 |
-
)
|
225 |
-
|
226 |
-
# Model selection
|
227 |
-
tv_model = st.sidebar.selectbox(
|
228 |
-
"Classification model",
|
229 |
-
TV_MODELS,
|
230 |
-
help="Supported Models for Pupil Diameter Estimation",
|
231 |
-
)
|
232 |
-
|
233 |
-
cam_method = "CAM"
|
234 |
-
# cam_method = st.sidebar.selectbox(
|
235 |
-
# "CAM method",
|
236 |
-
# CAM_METHODS,
|
237 |
-
# help="The way your class activation map will be computed",
|
238 |
-
# )
|
239 |
-
# target_layer = st.sidebar.text_input(
|
240 |
-
# "Target layer",
|
241 |
-
# default_layer,
|
242 |
-
# help='If you want to target several layers, add a "+" separator (e.g. "layer3+layer4")',
|
243 |
-
# )
|
244 |
-
|
245 |
-
st.sidebar.write("\n")
|
246 |
-
|
247 |
-
if st.sidebar.button("Predict Diameter & Compute CAM"):
|
248 |
-
if uploaded_file is None:
|
249 |
-
st.sidebar.error("Please upload an image first")
|
250 |
-
|
251 |
-
else:
|
252 |
-
with st.spinner("Analyzing..."):
|
253 |
-
model = None
|
254 |
-
for input_img in input_imgs:
|
255 |
-
if upscale == "-":
|
256 |
-
sr_configs = None
|
257 |
-
else:
|
258 |
-
sr_configs = {
|
259 |
-
"method": upscale_method_or_model,
|
260 |
-
"params": {"upscale": upscale},
|
261 |
-
}
|
262 |
-
config_file = {
|
263 |
-
"sr_configs": sr_configs,
|
264 |
-
"feature_extraction_configs": {
|
265 |
-
"blink_detection": False,
|
266 |
-
"upscale": upscale,
|
267 |
-
"extraction_library": "mediapipe",
|
268 |
-
},
|
269 |
-
}
|
270 |
-
|
271 |
-
img = np.array(input_img)
|
272 |
-
# img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
273 |
-
# if img.shape[0] > max_size or img.shape[1] > max_size:
|
274 |
-
# img = cv2.resize(img, (max_size, max_size))
|
275 |
-
|
276 |
-
ds_results = EyeDentityDatasetCreation(
|
277 |
-
feature_extraction_configs=config_file["feature_extraction_configs"],
|
278 |
-
sr_configs=config_file["sr_configs"],
|
279 |
-
)(img)
|
280 |
-
|
281 |
-
# if ds_results is not None:
|
282 |
-
# print("ds_results = ", ds_results.keys())
|
283 |
-
# NOTE:
|
284 |
-
# ds_results.keys() contains ===> 'full_imgs', 'faces', 'eyes', 'blinks', 'iris'
|
285 |
-
|
286 |
-
preprocess_steps = [
|
287 |
-
transforms.ToTensor(),
|
288 |
-
transforms.Resize(
|
289 |
-
[32, 64],
|
290 |
-
interpolation=transforms.InterpolationMode.BICUBIC,
|
291 |
-
antialias=True,
|
292 |
-
),
|
293 |
-
]
|
294 |
-
preprocess_function = transforms.Compose(preprocess_steps)
|
295 |
-
|
296 |
-
left_eye = None
|
297 |
-
right_eye = None
|
298 |
-
|
299 |
-
if ds_results is None:
|
300 |
-
# print("type of input_img = ", type(input_img))
|
301 |
-
input_img = preprocess_function(input_img)
|
302 |
-
input_img = input_img.unsqueeze(0)
|
303 |
-
if pupil_selection == "left_pupil":
|
304 |
-
left_eye = input_img
|
305 |
-
elif pupil_selection == "right_pupil":
|
306 |
-
right_eye = input_img
|
307 |
-
else:
|
308 |
-
left_eye = input_img
|
309 |
-
right_eye = input_img
|
310 |
-
# print("type of left_eye = ", type(left_eye))
|
311 |
-
# print("type of right_eye = ", type(right_eye))
|
312 |
-
elif "eyes" in ds_results.keys():
|
313 |
-
if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
|
314 |
-
left_eye = ds_results["eyes"]["left_eye"]
|
315 |
-
# print("type of left_eye = ", type(left_eye))
|
316 |
-
left_eye = to_pil_image(left_eye).convert("RGB")
|
317 |
-
# print("type of left_eye = ", type(left_eye))
|
318 |
-
|
319 |
-
left_eye = preprocess_function(left_eye)
|
320 |
-
# print("type of left_eye = ", type(left_eye))
|
321 |
-
|
322 |
-
left_eye = left_eye.unsqueeze(0)
|
323 |
-
if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None:
|
324 |
-
right_eye = ds_results["eyes"]["right_eye"]
|
325 |
-
# print("type of right_eye = ", type(right_eye))
|
326 |
-
right_eye = to_pil_image(right_eye).convert("RGB")
|
327 |
-
# print("type of right_eye = ", type(right_eye))
|
328 |
-
|
329 |
-
right_eye = preprocess_function(right_eye)
|
330 |
-
# print("type of right_eye = ", type(right_eye))
|
331 |
-
|
332 |
-
right_eye = right_eye.unsqueeze(0)
|
333 |
-
else:
|
334 |
-
# print("type of input_img = ", type(input_img))
|
335 |
-
input_img = preprocess_function(input_img)
|
336 |
-
input_img = input_img.unsqueeze(0)
|
337 |
-
if pupil_selection == "left_pupil":
|
338 |
-
left_eye = input_img
|
339 |
-
elif pupil_selection == "right_pupil":
|
340 |
-
right_eye = input_img
|
341 |
-
else:
|
342 |
-
left_eye = input_img
|
343 |
-
right_eye = input_img
|
344 |
-
# print("type of left_eye = ", type(left_eye))
|
345 |
-
# print("type of right_eye = ", type(right_eye))
|
346 |
-
|
347 |
-
# print("left_eye = ", left_eye.shape)
|
348 |
-
# print("right_eye = ", right_eye.shape)
|
349 |
-
|
350 |
-
if pupil_selection == "-":
|
351 |
-
selected_eyes = ["left_eye", "right_eye"]
|
352 |
-
elif pupil_selection == "left_pupil":
|
353 |
-
selected_eyes = ["left_eye"]
|
354 |
-
elif pupil_selection == "right_pupil":
|
355 |
-
selected_eyes = ["right_eye"]
|
356 |
-
|
357 |
-
for eye_type in selected_eyes:
|
358 |
-
|
359 |
-
if model is None:
|
360 |
-
model_configs = {
|
361 |
-
"model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt",
|
362 |
-
"registered_model_name": tv_model,
|
363 |
-
"num_classes": 1,
|
364 |
-
}
|
365 |
-
registered_model_name = model_configs["registered_model_name"]
|
366 |
-
model = _load_model(model_configs)
|
367 |
-
|
368 |
-
if registered_model_name == "ResNet18":
|
369 |
-
target_layer = model.resnet.layer4[-1].conv2
|
370 |
-
elif registered_model_name == "ResNet50":
|
371 |
-
target_layer = model.resnet.layer4[-1].conv3
|
372 |
-
else:
|
373 |
-
raise Exception(f"No target layer available for selected model: {registered_model_name}")
|
374 |
-
|
375 |
-
if left_eye is not None and eye_type == "left_eye":
|
376 |
-
input_img = left_eye
|
377 |
-
elif right_eye is not None and eye_type == "right_eye":
|
378 |
-
input_img = right_eye
|
379 |
-
else:
|
380 |
-
raise Exception("Wrong Data")
|
381 |
-
|
382 |
-
if cam_method is not None:
|
383 |
-
cam_extractor = torchcam_methods.__dict__[cam_method](
|
384 |
-
model,
|
385 |
-
target_layer=target_layer,
|
386 |
-
fc_layer=model.resnet.fc,
|
387 |
-
input_shape=input_img.shape,
|
388 |
-
)
|
389 |
-
|
390 |
-
# with torch.no_grad():
|
391 |
-
out = model(input_img)
|
392 |
-
cols[-1].markdown(
|
393 |
-
f"<h3>Predicted Pupil Diameter: {out[0].item():.2f} mm</h3>",
|
394 |
-
unsafe_allow_html=True,
|
395 |
-
)
|
396 |
-
# cols[-1].text(f"Predicted Pupil Diameter: {out[0].item():.2f}")
|
397 |
-
|
398 |
-
# Retrieve the CAM
|
399 |
-
act_maps = cam_extractor(0, out)
|
400 |
-
|
401 |
-
# Fuse the CAMs if there are several
|
402 |
-
activation_map = act_maps[0] if len(act_maps) == 1 else cam_extractor.fuse_cams(act_maps)
|
403 |
-
|
404 |
-
# Convert input image and activation map to PIL images
|
405 |
-
input_image_pil = to_pil_image(input_img.squeeze(0))
|
406 |
-
activation_map_pil = to_pil_image(activation_map, mode="F")
|
407 |
-
|
408 |
-
# Create the overlayed CAM result
|
409 |
-
result = overlay_mask(
|
410 |
-
input_image_pil,
|
411 |
-
activation_map_pil,
|
412 |
-
alpha=0.5,
|
413 |
-
)
|
414 |
-
|
415 |
-
# Create a subplot with 1 row and 2 columns
|
416 |
-
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
|
417 |
-
|
418 |
-
# Display the input image
|
419 |
-
axs[0].imshow(input_image_pil)
|
420 |
-
axs[0].axis("off")
|
421 |
-
axs[0].set_title("Input Image")
|
422 |
-
|
423 |
-
# Display the overlayed CAM result
|
424 |
-
axs[1].imshow(result)
|
425 |
-
axs[1].axis("off")
|
426 |
-
axs[1].set_title("Overlayed CAM")
|
427 |
-
|
428 |
-
# Display the plot
|
429 |
-
cols[-1].pyplot(fig)
|
430 |
-
cols[-1].text(f"eye image size: {input_img.shape[-1]} x {input_img.shape[-2]}")
|
431 |
-
|
432 |
-
|
433 |
-
if __name__ == "__main__":
|
434 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_utils.py
CHANGED
@@ -110,7 +110,7 @@ def overlay_text_on_frame(frame, text, position=(16, 20)):
|
|
110 |
return cv2.putText(frame, text, position, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA)
|
111 |
|
112 |
|
113 |
-
def process_frames(input_imgs, tv_model, pupil_selection, cam_method):
|
114 |
upscale = "-"
|
115 |
upscale_method_or_model = "-"
|
116 |
if upscale == "-":
|
@@ -144,7 +144,7 @@ def process_frames(input_imgs, tv_model, pupil_selection, cam_method):
|
|
144 |
elif pupil_selection == "right_pupil":
|
145 |
selected_eyes = ["right_eye"]
|
146 |
|
147 |
-
for eye_type in selected_eyes:
|
148 |
model_configs = {
|
149 |
"model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt",
|
150 |
"registered_model_name": tv_model,
|
@@ -163,6 +163,21 @@ def process_frames(input_imgs, tv_model, pupil_selection, cam_method):
|
|
163 |
input_frames[eye_type] = []
|
164 |
predicted_diameters[eye_type] = []
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
ds_creation = EyeDentityDatasetCreation(
|
167 |
feature_extraction_configs=config_file["feature_extraction_configs"],
|
168 |
sr_configs=config_file["sr_configs"],
|
@@ -178,7 +193,7 @@ def process_frames(input_imgs, tv_model, pupil_selection, cam_method):
|
|
178 |
]
|
179 |
preprocess_function = transforms.Compose(preprocess_steps)
|
180 |
|
181 |
-
for input_img in input_imgs:
|
182 |
|
183 |
img = np.array(input_img)
|
184 |
ds_results = ds_creation(img)
|
@@ -219,7 +234,7 @@ def process_frames(input_imgs, tv_model, pupil_selection, cam_method):
|
|
219 |
left_eye = input_img
|
220 |
right_eye = input_img
|
221 |
|
222 |
-
for eye_type in selected_eyes:
|
223 |
if left_eye is not None and eye_type == "left_eye":
|
224 |
if left_pupil_cam_extractor is None:
|
225 |
if tv_model == "ResNet18":
|
@@ -269,11 +284,33 @@ def process_frames(input_imgs, tv_model, pupil_selection, cam_method):
|
|
269 |
activation_map_pil = to_pil_image(activation_map, mode="F")
|
270 |
result = overlay_mask(input_image_pil, activation_map_pil, alpha=0.5)
|
271 |
|
|
|
|
|
|
|
272 |
# Add frame and predicted diameter to lists
|
273 |
-
input_frames[eye_type].append(
|
274 |
-
output_frames[eye_type].append(
|
275 |
predicted_diameters[eye_type].append(predicted_diameter)
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
return input_frames, output_frames, predicted_diameters, face_frames
|
278 |
|
279 |
|
@@ -299,23 +336,7 @@ def get_codec_and_extension(file_format):
|
|
299 |
return "MJPG", ".avi"
|
300 |
|
301 |
|
302 |
-
def
|
303 |
-
|
304 |
-
resized_frames = []
|
305 |
-
for i, frame in enumerate(video_frames):
|
306 |
-
input_img = resize_frame(frame, max_width=640, max_height=480)
|
307 |
-
# input_img = Image.fromarray(input_img)
|
308 |
-
resized_frames.append(input_img)
|
309 |
-
|
310 |
-
input_frames, output_frames, predicted_diameters, face_frames = process_frames(
|
311 |
-
resized_frames, tv_model, pupil_selection, cam_method
|
312 |
-
)
|
313 |
-
|
314 |
-
file_format = output_path.split(".")[-1]
|
315 |
-
codec, extension = get_codec_and_extension(file_format)
|
316 |
-
|
317 |
-
video_cols = cols[1].columns(len(input_frames.keys()))
|
318 |
-
|
319 |
for i, eye_type in enumerate(input_frames.keys()):
|
320 |
in_frames = input_frames[eye_type]
|
321 |
height, width, _ = in_frames[0].shape
|
@@ -329,10 +350,12 @@ def process_video(cols, video_frames, tv_model, pupil_selection, output_path, ca
|
|
329 |
with open(output_path, "rb") as video_file:
|
330 |
video_bytes = video_file.read()
|
331 |
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
332 |
-
display_video_with_autoplay(video_cols[
|
333 |
|
334 |
os.remove(output_path)
|
335 |
|
|
|
|
|
336 |
for i, eye_type in enumerate(output_frames.keys()):
|
337 |
out_frames = output_frames[eye_type]
|
338 |
height, width, _ = out_frames[0].shape
|
@@ -346,10 +369,12 @@ def process_video(cols, video_frames, tv_model, pupil_selection, output_path, ca
|
|
346 |
with open(output_path, "rb") as video_file:
|
347 |
video_bytes = video_file.read()
|
348 |
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
349 |
-
display_video_with_autoplay(video_cols[
|
350 |
|
351 |
os.remove(output_path)
|
352 |
|
|
|
|
|
353 |
for i, eye_type in enumerate(output_frames.keys()):
|
354 |
|
355 |
out_frames = output_frames[eye_type]
|
@@ -368,7 +393,19 @@ def process_video(cols, video_frames, tv_model, pupil_selection, output_path, ca
|
|
368 |
with open(output_path, "rb") as video_file:
|
369 |
video_bytes = video_file.read()
|
370 |
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
371 |
-
display_video_with_autoplay(video_cols[
|
|
|
372 |
os.remove(output_path)
|
373 |
|
374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
return cv2.putText(frame, text, position, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA)
|
111 |
|
112 |
|
113 |
+
def process_frames(cols, input_imgs, tv_model, pupil_selection, cam_method, output_path, codec):
|
114 |
upscale = "-"
|
115 |
upscale_method_or_model = "-"
|
116 |
if upscale == "-":
|
|
|
144 |
elif pupil_selection == "right_pupil":
|
145 |
selected_eyes = ["right_eye"]
|
146 |
|
147 |
+
for i, eye_type in enumerate(selected_eyes):
|
148 |
model_configs = {
|
149 |
"model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt",
|
150 |
"registered_model_name": tv_model,
|
|
|
163 |
input_frames[eye_type] = []
|
164 |
predicted_diameters[eye_type] = []
|
165 |
|
166 |
+
if output_path:
|
167 |
+
video_cols = cols[1].columns(len(input_frames.keys()))
|
168 |
+
|
169 |
+
video_input_placeholders = {}
|
170 |
+
for i, eye_type in enumerate(list(input_frames.keys())):
|
171 |
+
video_input_placeholders[eye_type] = video_cols[i].empty()
|
172 |
+
|
173 |
+
video_output_placeholders = {}
|
174 |
+
for i, eye_type in enumerate(list(input_frames.keys())):
|
175 |
+
video_output_placeholders[eye_type] = video_cols[i].empty()
|
176 |
+
|
177 |
+
video_predictions_placeholders = {}
|
178 |
+
for i, eye_type in enumerate(list(input_frames.keys())):
|
179 |
+
video_predictions_placeholders[eye_type] = video_cols[i].empty()
|
180 |
+
|
181 |
ds_creation = EyeDentityDatasetCreation(
|
182 |
feature_extraction_configs=config_file["feature_extraction_configs"],
|
183 |
sr_configs=config_file["sr_configs"],
|
|
|
193 |
]
|
194 |
preprocess_function = transforms.Compose(preprocess_steps)
|
195 |
|
196 |
+
for idx, input_img in enumerate(input_imgs):
|
197 |
|
198 |
img = np.array(input_img)
|
199 |
ds_results = ds_creation(img)
|
|
|
234 |
left_eye = input_img
|
235 |
right_eye = input_img
|
236 |
|
237 |
+
for i, eye_type in enumerate(selected_eyes):
|
238 |
if left_eye is not None and eye_type == "left_eye":
|
239 |
if left_pupil_cam_extractor is None:
|
240 |
if tv_model == "ResNet18":
|
|
|
284 |
activation_map_pil = to_pil_image(activation_map, mode="F")
|
285 |
result = overlay_mask(input_image_pil, activation_map_pil, alpha=0.5)
|
286 |
|
287 |
+
input_img_np = np.array(input_image_pil)
|
288 |
+
output_img_np = np.array(result)
|
289 |
+
|
290 |
# Add frame and predicted diameter to lists
|
291 |
+
input_frames[eye_type].append(input_img_np)
|
292 |
+
output_frames[eye_type].append(output_img_np)
|
293 |
predicted_diameters[eye_type].append(predicted_diameter)
|
294 |
|
295 |
+
if output_path:
|
296 |
+
height, width, _ = output_img_np.shape
|
297 |
+
frame = np.zeros((height, width, 3), dtype=np.uint8)
|
298 |
+
text = f"{predicted_diameter:.2f}"
|
299 |
+
frame = overlay_text_on_frame(frame, text)
|
300 |
+
|
301 |
+
video_input_placeholders[eye_type].image(input_img_np, use_column_width=True)
|
302 |
+
video_output_placeholders[eye_type].image(output_img_np, use_column_width=True)
|
303 |
+
video_predictions_placeholders[eye_type].image(frame, use_column_width=True)
|
304 |
+
|
305 |
+
st.session_state.current_frame = idx + 1
|
306 |
+
txt = f"<p style='font-size:20px;'> Number of Frames Processed: <strong>{st.session_state.current_frame} / {st.session_state.total_frames}</strong> </p>"
|
307 |
+
st.session_state.frame_placeholder.markdown(txt, unsafe_allow_html=True)
|
308 |
+
|
309 |
+
if output_path:
|
310 |
+
show_input_frames(input_frames, output_path, codec, video_input_placeholders)
|
311 |
+
show_cam_frames(output_frames, output_path, codec, video_output_placeholders)
|
312 |
+
show_pred_text_frames(output_frames, output_path, predicted_diameters, codec, video_predictions_placeholders)
|
313 |
+
|
314 |
return input_frames, output_frames, predicted_diameters, face_frames
|
315 |
|
316 |
|
|
|
336 |
return "MJPG", ".avi"
|
337 |
|
338 |
|
339 |
+
def show_input_frames(input_frames, output_path, codec, video_cols):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
for i, eye_type in enumerate(input_frames.keys()):
|
341 |
in_frames = input_frames[eye_type]
|
342 |
height, width, _ = in_frames[0].shape
|
|
|
350 |
with open(output_path, "rb") as video_file:
|
351 |
video_bytes = video_file.read()
|
352 |
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
353 |
+
display_video_with_autoplay(video_cols[eye_type], video_base64)
|
354 |
|
355 |
os.remove(output_path)
|
356 |
|
357 |
+
|
358 |
+
def show_cam_frames(output_frames, output_path, codec, video_cols):
|
359 |
for i, eye_type in enumerate(output_frames.keys()):
|
360 |
out_frames = output_frames[eye_type]
|
361 |
height, width, _ = out_frames[0].shape
|
|
|
369 |
with open(output_path, "rb") as video_file:
|
370 |
video_bytes = video_file.read()
|
371 |
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
372 |
+
display_video_with_autoplay(video_cols[eye_type], video_base64)
|
373 |
|
374 |
os.remove(output_path)
|
375 |
|
376 |
+
|
377 |
+
def show_pred_text_frames(output_frames, output_path, predicted_diameters, codec, video_cols):
|
378 |
for i, eye_type in enumerate(output_frames.keys()):
|
379 |
|
380 |
out_frames = output_frames[eye_type]
|
|
|
393 |
with open(output_path, "rb") as video_file:
|
394 |
video_bytes = video_file.read()
|
395 |
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
396 |
+
display_video_with_autoplay(video_cols[eye_type], video_base64)
|
397 |
+
|
398 |
os.remove(output_path)
|
399 |
|
400 |
+
|
401 |
+
def process_video(cols, video_frames, tv_model, pupil_selection, output_path, cam_method):
|
402 |
+
|
403 |
+
resized_frames = []
|
404 |
+
for i, frame in enumerate(video_frames):
|
405 |
+
input_img = resize_frame(frame, max_width=640, max_height=480)
|
406 |
+
resized_frames.append(input_img)
|
407 |
+
|
408 |
+
file_format = output_path.split(".")[-1]
|
409 |
+
codec, extension = get_codec_and_extension(file_format)
|
410 |
+
|
411 |
+
process_frames(cols, resized_frames, tv_model, pupil_selection, cam_method, output_path, codec)
|