Spaces:
Running
Running
vijul.shah
commited on
Commit
·
9acc552
1
Parent(s):
f0adec0
Input Video and Predictions as output video added
Browse files- app.py +63 -381
- app_old.py +434 -0
- app_utils.py +374 -0
- config.yml +2 -1
- feature_extraction/extractor_mediapipe.py +12 -38
- feature_extraction/features_extractor.py +1 -3
- image.py +32 -0
- video.py +48 -0
app.py
CHANGED
@@ -1,431 +1,113 @@
|
|
1 |
-
# takn from: https://huggingface.co/spaces/frgfm/torch-cam/blob/main/app.py
|
2 |
-
|
3 |
-
# streamlit run app.py
|
4 |
-
from io import BytesIO
|
5 |
import os
|
6 |
import sys
|
7 |
-
import cv2
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
import numpy as np
|
10 |
-
import streamlit as st
|
11 |
-
import torch
|
12 |
import tempfile
|
13 |
-
from PIL import Image
|
14 |
-
from torchvision import models
|
15 |
-
from torchvision.transforms.functional import normalize, resize, to_pil_image, to_tensor
|
16 |
-
from torchvision import transforms
|
17 |
-
|
18 |
-
from torchcam.methods import CAM
|
19 |
-
from torchcam import methods as torchcam_methods
|
20 |
-
from torchcam.utils import overlay_mask
|
21 |
import os.path as osp
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
root_path = osp.abspath(osp.join(__file__, osp.pardir))
|
24 |
sys.path.append(root_path)
|
25 |
|
26 |
-
from preprocessing.dataset_creation import EyeDentityDatasetCreation
|
27 |
-
from utils import get_model
|
28 |
from registry_utils import import_registered_modules
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
import_registered_modules()
|
31 |
-
# from torchcam.methods._utils import locate_candidate_layer
|
32 |
|
33 |
-
CAM_METHODS = [
|
34 |
-
|
35 |
-
# "GradCAM",
|
36 |
-
# "GradCAMpp",
|
37 |
-
# "SmoothGradCAMpp",
|
38 |
-
# "ScoreCAM",
|
39 |
-
# "SSCAM",
|
40 |
-
# "ISCAM",
|
41 |
-
# "XGradCAM",
|
42 |
-
# "LayerCAM",
|
43 |
-
]
|
44 |
-
TV_MODELS = [
|
45 |
-
"ResNet18",
|
46 |
-
"ResNet50",
|
47 |
-
]
|
48 |
SR_METHODS = ["GFPGAN", "CodeFormer", "RealESRGAN", "SRResNet", "HAT"]
|
49 |
UPSCALE = [2, 4]
|
50 |
UPSCALE_METHODS = ["BILINEAR", "BICUBIC"]
|
51 |
LABEL_MAP = ["left_pupil", "right_pupil"]
|
52 |
|
53 |
|
54 |
-
@torch.no_grad()
|
55 |
-
def _load_model(model_configs, device="cpu"):
|
56 |
-
model_path = os.path.join(root_path, model_configs["model_path"])
|
57 |
-
model_configs.pop("model_path")
|
58 |
-
model_dict = torch.load(model_path, map_location=device)
|
59 |
-
model = get_model(model_configs=model_configs)
|
60 |
-
model.load_state_dict(model_dict)
|
61 |
-
model = model.to(device)
|
62 |
-
model = model.eval()
|
63 |
-
return model
|
64 |
-
|
65 |
-
|
66 |
-
def extract_frames(video_path):
|
67 |
-
vidcap = cv2.VideoCapture(video_path)
|
68 |
-
frames = []
|
69 |
-
success, image = vidcap.read()
|
70 |
-
count = 0
|
71 |
-
while success:
|
72 |
-
# Convert the frame to RGB (cv2 uses BGR by default)
|
73 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
74 |
-
frames.append(image_rgb)
|
75 |
-
success, image = vidcap.read()
|
76 |
-
count += 1
|
77 |
-
vidcap.release()
|
78 |
-
return frames
|
79 |
-
|
80 |
-
|
81 |
-
# Function to check if a file is an image
|
82 |
-
def is_image(file_extension):
|
83 |
-
return file_extension.lower() in ["png", "jpeg", "jpg"]
|
84 |
-
|
85 |
-
|
86 |
-
# Function to check if a file is a video
|
87 |
-
def is_video(file_extension):
|
88 |
-
return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"]
|
89 |
-
|
90 |
-
|
91 |
-
def resize_frame(frame, max_width, max_height):
|
92 |
-
image = Image.fromarray(frame)
|
93 |
-
original_size = image.size
|
94 |
-
|
95 |
-
# Resize the frame similarly to the image resizing logic
|
96 |
-
if original_size[0] == original_size[1] and original_size[0] >= 256:
|
97 |
-
max_size = (256, 256)
|
98 |
-
else:
|
99 |
-
max_size = list(original_size)
|
100 |
-
if original_size[0] >= 640:
|
101 |
-
max_size[0] = 640
|
102 |
-
elif original_size[0] < 64:
|
103 |
-
max_size[0] = 64
|
104 |
-
if original_size[1] >= 480:
|
105 |
-
max_size[1] = 480
|
106 |
-
elif original_size[1] < 32:
|
107 |
-
max_size[1] = 32
|
108 |
-
|
109 |
-
image.thumbnail(max_size)
|
110 |
-
return image
|
111 |
-
|
112 |
-
|
113 |
def main():
|
114 |
-
# Wide mode
|
115 |
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
|
116 |
-
|
117 |
-
# Designing the interface
|
118 |
st.title("EyeDentify Playground")
|
119 |
-
# For newline
|
120 |
-
st.write("\n")
|
121 |
-
# Set the columns
|
122 |
cols = st.columns((1, 1))
|
123 |
-
|
124 |
-
cols[0].header("Input image")
|
125 |
-
# cols[1].header("Raw CAM")
|
126 |
cols[-1].header("Prediction")
|
127 |
|
128 |
-
# Sidebar
|
129 |
-
# File selection
|
130 |
st.sidebar.title("Upload Face or Eye")
|
131 |
-
# Disabling warning
|
132 |
-
st.set_option("deprecation.showfileUploaderEncoding", False)
|
133 |
-
# Choose your own image
|
134 |
uploaded_file = st.sidebar.file_uploader(
|
135 |
"Upload Image or Video", type=["png", "jpeg", "jpg", "mp4", "avi", "mov", "mkv", "webm"]
|
136 |
)
|
|
|
137 |
if uploaded_file is not None:
|
138 |
-
# Get file extension
|
139 |
file_extension = uploaded_file.name.split(".")[-1]
|
140 |
-
input_imgs = []
|
141 |
|
142 |
if is_image(file_extension):
|
143 |
-
input_img = Image.open(BytesIO(uploaded_file.read())
|
144 |
-
#
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
else:
|
151 |
-
if input_img.size[0] >= 640:
|
152 |
-
max_size[0] = 640
|
153 |
-
elif input_img.size[0] < 64:
|
154 |
-
max_size[0] = 64
|
155 |
-
if input_img.size[1] >= 480:
|
156 |
-
max_size[1] = 480
|
157 |
-
elif input_img.size[1] < 32:
|
158 |
-
max_size[1] = 32
|
159 |
-
input_img.thumbnail((max_size[0], max_size[1])) # Bicubic resampling
|
160 |
-
input_imgs.append(input_img)
|
161 |
-
# print("input_img after = ", input_img.size)
|
162 |
-
# cols[0].image(input_img)
|
163 |
-
fig0, axs0 = plt.subplots(1, 1, figsize=(10, 10))
|
164 |
-
# Display the input image
|
165 |
-
axs0.imshow(input_imgs[0])
|
166 |
-
axs0.axis("off")
|
167 |
-
axs0.set_title("Input Image")
|
168 |
|
169 |
-
# Display the plot
|
170 |
-
cols[0].pyplot(fig0)
|
171 |
-
cols[0].text(f"Input Image Resized: {max_size[0]} x {max_size[1]}")
|
172 |
-
|
173 |
-
# TODO: show the face features extracted from the image under 'input image' column
|
174 |
elif is_video(file_extension):
|
175 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
176 |
tfile.write(uploaded_file.read())
|
177 |
video_path = tfile.name
|
178 |
-
|
179 |
-
|
180 |
-
frames = extract_frames(video_path)
|
181 |
-
print(f"Extracted {len(frames)} frames from the video")
|
182 |
-
|
183 |
-
# Process the frames
|
184 |
-
for i, frame in enumerate(frames):
|
185 |
-
input_imgs.append(resize_frame(frame, 640, 480))
|
186 |
-
|
187 |
-
os.remove(video_path)
|
188 |
-
|
189 |
-
fig0, axs0 = plt.subplots(1, 1, figsize=(10, 10))
|
190 |
-
# Display the input image
|
191 |
-
axs0.imshow(input_imgs[0])
|
192 |
-
axs0.axis("off")
|
193 |
-
axs0.set_title("Input Image")
|
194 |
-
|
195 |
-
# Display the plot
|
196 |
-
cols[0].pyplot(fig0)
|
197 |
-
# cols[0].text(f"Input Image Resized: {max_size[0]} x {max_size[1]}")
|
198 |
|
199 |
st.sidebar.title("Setup")
|
200 |
-
|
201 |
-
# Upscale selection
|
202 |
-
upscale = "-"
|
203 |
-
# upscale = st.sidebar.selectbox(
|
204 |
-
# "Upscale",
|
205 |
-
# ["-"] + UPSCALE,
|
206 |
-
# help="Upscale the uploaded image 2 or 4 times. Keep blank for no upscaling",
|
207 |
-
# )
|
208 |
-
|
209 |
-
# Upscale method selection
|
210 |
-
if upscale != "-":
|
211 |
-
upscale_method_or_model = st.sidebar.selectbox(
|
212 |
-
"Upscale Method / Model",
|
213 |
-
UPSCALE_METHODS + SR_METHODS,
|
214 |
-
help="Select a method or model to upscale the uploaded image",
|
215 |
-
)
|
216 |
-
else:
|
217 |
-
upscale_method_or_model = None
|
218 |
-
|
219 |
-
# Pupil selection
|
220 |
pupil_selection = st.sidebar.selectbox(
|
221 |
-
"Pupil Selection",
|
222 |
-
["-"] + LABEL_MAP,
|
223 |
-
help="Select left or right pupil OR keep blank for both pupil diameter estimation",
|
224 |
-
)
|
225 |
-
|
226 |
-
# Model selection
|
227 |
-
tv_model = st.sidebar.selectbox(
|
228 |
-
"Classification model",
|
229 |
-
TV_MODELS,
|
230 |
-
help="Supported Models for Pupil Diameter Estimation",
|
231 |
)
|
232 |
-
|
233 |
-
cam_method = "CAM"
|
234 |
-
# cam_method = st.sidebar.selectbox(
|
235 |
-
# "CAM method",
|
236 |
-
# CAM_METHODS,
|
237 |
-
# help="The way your class activation map will be computed",
|
238 |
-
# )
|
239 |
-
# target_layer = st.sidebar.text_input(
|
240 |
-
# "Target layer",
|
241 |
-
# default_layer,
|
242 |
-
# help='If you want to target several layers, add a "+" separator (e.g. "layer3+layer4")',
|
243 |
-
# )
|
244 |
-
|
245 |
-
st.sidebar.write("\n")
|
246 |
|
247 |
if st.sidebar.button("Predict Diameter & Compute CAM"):
|
248 |
if uploaded_file is None:
|
249 |
-
st.sidebar.error("Please upload an image
|
250 |
-
|
251 |
else:
|
252 |
with st.spinner("Analyzing..."):
|
253 |
-
model = None
|
254 |
-
for input_img in input_imgs:
|
255 |
-
if upscale == "-":
|
256 |
-
sr_configs = None
|
257 |
-
else:
|
258 |
-
sr_configs = {
|
259 |
-
"method": upscale_method_or_model,
|
260 |
-
"params": {"upscale": upscale},
|
261 |
-
}
|
262 |
-
config_file = {
|
263 |
-
"sr_configs": sr_configs,
|
264 |
-
"feature_extraction_configs": {
|
265 |
-
"blink_detection": False,
|
266 |
-
"upscale": upscale,
|
267 |
-
"extraction_library": "mediapipe",
|
268 |
-
},
|
269 |
-
}
|
270 |
-
|
271 |
-
img = np.array(input_img)
|
272 |
-
# img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
273 |
-
# if img.shape[0] > max_size or img.shape[1] > max_size:
|
274 |
-
# img = cv2.resize(img, (max_size, max_size))
|
275 |
-
|
276 |
-
ds_results = EyeDentityDatasetCreation(
|
277 |
-
feature_extraction_configs=config_file["feature_extraction_configs"],
|
278 |
-
sr_configs=config_file["sr_configs"],
|
279 |
-
)(img)
|
280 |
-
# if ds_results is not None:
|
281 |
-
# print("ds_results = ", ds_results.keys())
|
282 |
-
|
283 |
-
preprocess_steps = [
|
284 |
-
transforms.ToTensor(),
|
285 |
-
transforms.Resize(
|
286 |
-
[32, 64],
|
287 |
-
# interpolation=transforms.InterpolationMode.BILINEAR,
|
288 |
-
interpolation=transforms.InterpolationMode.BICUBIC,
|
289 |
-
antialias=True,
|
290 |
-
),
|
291 |
-
]
|
292 |
-
preprocess_function = transforms.Compose(preprocess_steps)
|
293 |
-
|
294 |
-
left_eye = None
|
295 |
-
right_eye = None
|
296 |
-
|
297 |
-
if ds_results is None:
|
298 |
-
# print("type of input_img = ", type(input_img))
|
299 |
-
input_img = preprocess_function(input_img)
|
300 |
-
input_img = input_img.unsqueeze(0)
|
301 |
-
if pupil_selection == "left_pupil":
|
302 |
-
left_eye = input_img
|
303 |
-
elif pupil_selection == "right_pupil":
|
304 |
-
right_eye = input_img
|
305 |
-
else:
|
306 |
-
left_eye = input_img
|
307 |
-
right_eye = input_img
|
308 |
-
# print("type of left_eye = ", type(left_eye))
|
309 |
-
# print("type of right_eye = ", type(right_eye))
|
310 |
-
elif "eyes" in ds_results.keys():
|
311 |
-
if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
|
312 |
-
left_eye = ds_results["eyes"]["left_eye"]
|
313 |
-
# print("type of left_eye = ", type(left_eye))
|
314 |
-
left_eye = to_pil_image(left_eye).convert("RGB")
|
315 |
-
# print("type of left_eye = ", type(left_eye))
|
316 |
-
|
317 |
-
left_eye = preprocess_function(left_eye)
|
318 |
-
# print("type of left_eye = ", type(left_eye))
|
319 |
-
|
320 |
-
left_eye = left_eye.unsqueeze(0)
|
321 |
-
if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None:
|
322 |
-
right_eye = ds_results["eyes"]["right_eye"]
|
323 |
-
# print("type of right_eye = ", type(right_eye))
|
324 |
-
right_eye = to_pil_image(right_eye).convert("RGB")
|
325 |
-
# print("type of right_eye = ", type(right_eye))
|
326 |
-
|
327 |
-
right_eye = preprocess_function(right_eye)
|
328 |
-
# print("type of right_eye = ", type(right_eye))
|
329 |
-
|
330 |
-
right_eye = right_eye.unsqueeze(0)
|
331 |
-
else:
|
332 |
-
# print("type of input_img = ", type(input_img))
|
333 |
-
input_img = preprocess_function(input_img)
|
334 |
-
input_img = input_img.unsqueeze(0)
|
335 |
-
if pupil_selection == "left_pupil":
|
336 |
-
left_eye = input_img
|
337 |
-
elif pupil_selection == "right_pupil":
|
338 |
-
right_eye = input_img
|
339 |
-
else:
|
340 |
-
left_eye = input_img
|
341 |
-
right_eye = input_img
|
342 |
-
# print("type of left_eye = ", type(left_eye))
|
343 |
-
# print("type of right_eye = ", type(right_eye))
|
344 |
-
|
345 |
-
# print("left_eye = ", left_eye.shape)
|
346 |
-
# print("right_eye = ", right_eye.shape)
|
347 |
-
|
348 |
-
if pupil_selection == "-":
|
349 |
-
selected_eyes = ["left_eye", "right_eye"]
|
350 |
-
elif pupil_selection == "left_pupil":
|
351 |
-
selected_eyes = ["left_eye"]
|
352 |
-
elif pupil_selection == "right_pupil":
|
353 |
-
selected_eyes = ["right_eye"]
|
354 |
-
|
355 |
-
for eye_type in selected_eyes:
|
356 |
-
|
357 |
-
if model is None:
|
358 |
-
model_configs = {
|
359 |
-
"model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt",
|
360 |
-
"registered_model_name": tv_model,
|
361 |
-
"num_classes": 1,
|
362 |
-
}
|
363 |
-
registered_model_name = model_configs["registered_model_name"]
|
364 |
-
model = _load_model(model_configs)
|
365 |
-
|
366 |
-
if registered_model_name == "ResNet18":
|
367 |
-
target_layer = model.resnet.layer4[-1].conv2
|
368 |
-
elif registered_model_name == "ResNet50":
|
369 |
-
target_layer = model.resnet.layer4[-1].conv3
|
370 |
-
else:
|
371 |
-
raise Exception(f"No target layer available for selected model: {registered_model_name}")
|
372 |
-
|
373 |
-
if left_eye is not None and eye_type == "left_eye":
|
374 |
-
input_img = left_eye
|
375 |
-
elif right_eye is not None and eye_type == "right_eye":
|
376 |
-
input_img = right_eye
|
377 |
-
else:
|
378 |
-
raise Exception("Wrong Data")
|
379 |
-
|
380 |
-
if cam_method is not None:
|
381 |
-
cam_extractor = torchcam_methods.__dict__[cam_method](
|
382 |
-
model,
|
383 |
-
target_layer=target_layer,
|
384 |
-
fc_layer=model.resnet.fc,
|
385 |
-
input_shape=input_img.shape,
|
386 |
-
)
|
387 |
-
|
388 |
-
# with torch.no_grad():
|
389 |
-
out = model(input_img)
|
390 |
-
cols[-1].markdown(
|
391 |
-
f"<h3>Predicted Pupil Diameter: {out[0].item():.2f} mm</h3>",
|
392 |
-
unsafe_allow_html=True,
|
393 |
-
)
|
394 |
-
# cols[-1].text(f"Predicted Pupil Diameter: {out[0].item():.2f}")
|
395 |
-
|
396 |
-
# Retrieve the CAM
|
397 |
-
act_maps = cam_extractor(0, out)
|
398 |
-
|
399 |
-
# Fuse the CAMs if there are several
|
400 |
-
activation_map = act_maps[0] if len(act_maps) == 1 else cam_extractor.fuse_cams(act_maps)
|
401 |
-
|
402 |
-
# Convert input image and activation map to PIL images
|
403 |
-
input_image_pil = to_pil_image(input_img.squeeze(0))
|
404 |
-
activation_map_pil = to_pil_image(activation_map, mode="F")
|
405 |
-
|
406 |
-
# Create the overlayed CAM result
|
407 |
-
result = overlay_mask(
|
408 |
-
input_image_pil,
|
409 |
-
activation_map_pil,
|
410 |
-
alpha=0.5,
|
411 |
-
)
|
412 |
-
|
413 |
-
# Create a subplot with 1 row and 2 columns
|
414 |
-
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
|
415 |
-
|
416 |
-
# Display the input image
|
417 |
-
axs[0].imshow(input_image_pil)
|
418 |
-
axs[0].axis("off")
|
419 |
-
axs[0].set_title("Input Image")
|
420 |
-
|
421 |
-
# Display the overlayed CAM result
|
422 |
-
axs[1].imshow(result)
|
423 |
-
axs[1].axis("off")
|
424 |
-
axs[1].set_title("Overlayed CAM")
|
425 |
|
426 |
-
|
427 |
-
|
428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
|
430 |
|
431 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import sys
|
|
|
|
|
|
|
|
|
|
|
3 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import os.path as osp
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
+
import numpy as np
|
8 |
+
import streamlit as st
|
9 |
+
from PIL import ImageOps
|
10 |
+
from matplotlib import pyplot as plt
|
11 |
|
12 |
root_path = osp.abspath(osp.join(__file__, osp.pardir))
|
13 |
sys.path.append(root_path)
|
14 |
|
|
|
|
|
15 |
from registry_utils import import_registered_modules
|
16 |
+
from app_utils import (
|
17 |
+
extract_frames,
|
18 |
+
is_image,
|
19 |
+
is_video,
|
20 |
+
display_results,
|
21 |
+
overlay_text_on_frame,
|
22 |
+
process_frames,
|
23 |
+
process_video,
|
24 |
+
resize_frame,
|
25 |
+
)
|
26 |
|
27 |
import_registered_modules()
|
|
|
28 |
|
29 |
+
CAM_METHODS = ["CAM"]
|
30 |
+
TV_MODELS = ["ResNet18", "ResNet50"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
SR_METHODS = ["GFPGAN", "CodeFormer", "RealESRGAN", "SRResNet", "HAT"]
|
32 |
UPSCALE = [2, 4]
|
33 |
UPSCALE_METHODS = ["BILINEAR", "BICUBIC"]
|
34 |
LABEL_MAP = ["left_pupil", "right_pupil"]
|
35 |
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def main():
|
|
|
38 |
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
|
|
|
|
|
39 |
st.title("EyeDentify Playground")
|
|
|
|
|
|
|
40 |
cols = st.columns((1, 1))
|
41 |
+
cols[0].header("Input")
|
|
|
|
|
42 |
cols[-1].header("Prediction")
|
43 |
|
|
|
|
|
44 |
st.sidebar.title("Upload Face or Eye")
|
|
|
|
|
|
|
45 |
uploaded_file = st.sidebar.file_uploader(
|
46 |
"Upload Image or Video", type=["png", "jpeg", "jpg", "mp4", "avi", "mov", "mkv", "webm"]
|
47 |
)
|
48 |
+
|
49 |
if uploaded_file is not None:
|
|
|
50 |
file_extension = uploaded_file.name.split(".")[-1]
|
|
|
51 |
|
52 |
if is_image(file_extension):
|
53 |
+
input_img = Image.open(BytesIO(uploaded_file.read())).convert("RGB")
|
54 |
+
# NOTE: images taken with phone camera has an EXIF data field which often rotates images taken with the phone in a tilted position. PIL has a utility function that removes this data and ‘uprights’ the image.
|
55 |
+
input_img = ImageOps.exif_transpose(input_img)
|
56 |
+
input_img = resize_frame(input_img, max_width=640, max_height=480)
|
57 |
+
input_img = resize_frame(input_img, max_width=640, max_height=480)
|
58 |
+
cols[0].image(input_img, use_column_width=True)
|
59 |
+
input_img.save("out.jpg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|
|
|
|
|
|
|
|
61 |
elif is_video(file_extension):
|
62 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
63 |
tfile.write(uploaded_file.read())
|
64 |
video_path = tfile.name
|
65 |
+
video_frames = extract_frames(video_path)
|
66 |
+
cols[0].video(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
st.sidebar.title("Setup")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
pupil_selection = st.sidebar.selectbox(
|
70 |
+
"Pupil Selection", ["both"] + LABEL_MAP, help="Select left or right pupil OR both for diameter estimation"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
)
|
72 |
+
tv_model = st.sidebar.selectbox("Classification model", ["ResNet18", "ResNet50"], help="Supported Models")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
if st.sidebar.button("Predict Diameter & Compute CAM"):
|
75 |
if uploaded_file is None:
|
76 |
+
st.sidebar.error("Please upload an image or video")
|
|
|
77 |
else:
|
78 |
with st.spinner("Analyzing..."):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
if is_image(file_extension):
|
81 |
+
input_frames, output_frames, predicted_diameters, face_frames = process_frames(
|
82 |
+
[input_img], tv_model, pupil_selection, cam_method=CAM_METHODS[-1]
|
83 |
+
)
|
84 |
+
for ff in face_frames:
|
85 |
+
if ff["has_face"]:
|
86 |
+
cols[1].image(face_frames[0]["img"], use_column_width=True)
|
87 |
+
|
88 |
+
input_frames_keys = input_frames.keys()
|
89 |
+
video_cols = cols[1].columns(len(input_frames_keys))
|
90 |
+
for i, eye_type in enumerate(input_frames_keys):
|
91 |
+
video_cols[i].image(input_frames[eye_type][-1], use_column_width=True)
|
92 |
+
|
93 |
+
output_frames_keys = output_frames.keys()
|
94 |
+
fig, axs = plt.subplots(1, len(output_frames_keys), figsize=(10, 5))
|
95 |
+
for i, eye_type in enumerate(output_frames_keys):
|
96 |
+
height, width, c = output_frames[eye_type][0].shape
|
97 |
+
video_cols[i].image(output_frames[eye_type][-1], use_column_width=True)
|
98 |
+
|
99 |
+
frame = np.zeros((height, width, c), dtype=np.uint8)
|
100 |
+
text = f"{predicted_diameters[eye_type][0]:.2f}"
|
101 |
+
frame = overlay_text_on_frame(frame, text)
|
102 |
+
video_cols[i].image(frame, use_column_width=True)
|
103 |
+
|
104 |
+
elif is_video(file_extension):
|
105 |
+
output_video_path = f"{root_path}/tmp.webm"
|
106 |
+
process_video(
|
107 |
+
cols, video_frames, tv_model, pupil_selection, output_video_path, cam_method=CAM_METHODS[-1]
|
108 |
+
)
|
109 |
+
|
110 |
+
os.remove(video_path)
|
111 |
|
112 |
|
113 |
if __name__ == "__main__":
|
app_old.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# takn from: https://huggingface.co/spaces/frgfm/torch-cam/blob/main/app.py
|
2 |
+
|
3 |
+
# streamlit run app.py
|
4 |
+
from io import BytesIO
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
import cv2
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import numpy as np
|
10 |
+
import streamlit as st
|
11 |
+
import torch
|
12 |
+
import tempfile
|
13 |
+
from PIL import Image
|
14 |
+
from torchvision import models
|
15 |
+
from torchvision.transforms.functional import normalize, resize, to_pil_image, to_tensor
|
16 |
+
from torchvision import transforms
|
17 |
+
|
18 |
+
from torchcam.methods import CAM
|
19 |
+
from torchcam import methods as torchcam_methods
|
20 |
+
from torchcam.utils import overlay_mask
|
21 |
+
import os.path as osp
|
22 |
+
|
23 |
+
root_path = osp.abspath(osp.join(__file__, osp.pardir))
|
24 |
+
sys.path.append(root_path)
|
25 |
+
|
26 |
+
from preprocessing.dataset_creation import EyeDentityDatasetCreation
|
27 |
+
from utils import get_model
|
28 |
+
from registry_utils import import_registered_modules
|
29 |
+
|
30 |
+
import_registered_modules()
|
31 |
+
# from torchcam.methods._utils import locate_candidate_layer
|
32 |
+
|
33 |
+
CAM_METHODS = [
|
34 |
+
"CAM",
|
35 |
+
# "GradCAM",
|
36 |
+
# "GradCAMpp",
|
37 |
+
# "SmoothGradCAMpp",
|
38 |
+
# "ScoreCAM",
|
39 |
+
# "SSCAM",
|
40 |
+
# "ISCAM",
|
41 |
+
# "XGradCAM",
|
42 |
+
# "LayerCAM",
|
43 |
+
]
|
44 |
+
TV_MODELS = [
|
45 |
+
"ResNet18",
|
46 |
+
"ResNet50",
|
47 |
+
]
|
48 |
+
SR_METHODS = ["GFPGAN", "CodeFormer", "RealESRGAN", "SRResNet", "HAT"]
|
49 |
+
UPSCALE = [2, 4]
|
50 |
+
UPSCALE_METHODS = ["BILINEAR", "BICUBIC"]
|
51 |
+
LABEL_MAP = ["left_pupil", "right_pupil"]
|
52 |
+
|
53 |
+
|
54 |
+
@torch.no_grad()
|
55 |
+
def _load_model(model_configs, device="cpu"):
|
56 |
+
model_path = os.path.join(root_path, model_configs["model_path"])
|
57 |
+
model_configs.pop("model_path")
|
58 |
+
model_dict = torch.load(model_path, map_location=device)
|
59 |
+
model = get_model(model_configs=model_configs)
|
60 |
+
model.load_state_dict(model_dict)
|
61 |
+
model = model.to(device)
|
62 |
+
model = model.eval()
|
63 |
+
return model
|
64 |
+
|
65 |
+
|
66 |
+
def extract_frames(video_path):
|
67 |
+
vidcap = cv2.VideoCapture(video_path)
|
68 |
+
frames = []
|
69 |
+
success, image = vidcap.read()
|
70 |
+
count = 0
|
71 |
+
while success:
|
72 |
+
# Convert the frame to RGB (cv2 uses BGR by default)
|
73 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
74 |
+
frames.append(image_rgb)
|
75 |
+
success, image = vidcap.read()
|
76 |
+
count += 1
|
77 |
+
vidcap.release()
|
78 |
+
return frames
|
79 |
+
|
80 |
+
|
81 |
+
# Function to check if a file is an image
|
82 |
+
def is_image(file_extension):
|
83 |
+
return file_extension.lower() in ["png", "jpeg", "jpg"]
|
84 |
+
|
85 |
+
|
86 |
+
# Function to check if a file is a video
|
87 |
+
def is_video(file_extension):
|
88 |
+
return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"]
|
89 |
+
|
90 |
+
|
91 |
+
def resize_frame(frame, max_width, max_height):
|
92 |
+
image = Image.fromarray(frame)
|
93 |
+
original_size = image.size
|
94 |
+
|
95 |
+
# Resize the frame similarly to the image resizing logic
|
96 |
+
if original_size[0] == original_size[1] and original_size[0] >= 256:
|
97 |
+
max_size = (256, 256)
|
98 |
+
else:
|
99 |
+
max_size = list(original_size)
|
100 |
+
if original_size[0] >= 640:
|
101 |
+
max_size[0] = 640
|
102 |
+
elif original_size[0] < 64:
|
103 |
+
max_size[0] = 64
|
104 |
+
if original_size[1] >= 480:
|
105 |
+
max_size[1] = 480
|
106 |
+
elif original_size[1] < 32:
|
107 |
+
max_size[1] = 32
|
108 |
+
|
109 |
+
image.thumbnail(max_size)
|
110 |
+
return image
|
111 |
+
|
112 |
+
|
113 |
+
def main():
|
114 |
+
# Wide mode
|
115 |
+
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
|
116 |
+
|
117 |
+
# Designing the interface
|
118 |
+
st.title("EyeDentify Playground")
|
119 |
+
# For newline
|
120 |
+
st.write("\n")
|
121 |
+
# Set the columns
|
122 |
+
cols = st.columns((1, 1))
|
123 |
+
# cols = st.columns((1, 1, 1))
|
124 |
+
cols[0].header("Input image")
|
125 |
+
# cols[1].header("Raw CAM")
|
126 |
+
cols[-1].header("Prediction")
|
127 |
+
|
128 |
+
# Sidebar
|
129 |
+
# File selection
|
130 |
+
st.sidebar.title("Upload Face or Eye")
|
131 |
+
# Disabling warning
|
132 |
+
st.set_option("deprecation.showfileUploaderEncoding", False)
|
133 |
+
# Choose your own image
|
134 |
+
uploaded_file = st.sidebar.file_uploader(
|
135 |
+
"Upload Image or Video", type=["png", "jpeg", "jpg", "mp4", "avi", "mov", "mkv", "webm"]
|
136 |
+
)
|
137 |
+
if uploaded_file is not None:
|
138 |
+
# Get file extension
|
139 |
+
file_extension = uploaded_file.name.split(".")[-1]
|
140 |
+
input_imgs = []
|
141 |
+
|
142 |
+
if is_image(file_extension):
|
143 |
+
input_img = Image.open(BytesIO(uploaded_file.read()), mode="r").convert("RGB")
|
144 |
+
# print("input_img before = ", input_img.size)
|
145 |
+
max_size = [input_img.size[0], input_img.size[1]]
|
146 |
+
cols[0].text(f"Input Image: {max_size[0]} x {max_size[1]}")
|
147 |
+
if input_img.size[0] == input_img.size[1] and input_img.size[0] >= 256:
|
148 |
+
max_size[0] = 256
|
149 |
+
max_size[1] = 256
|
150 |
+
else:
|
151 |
+
if input_img.size[0] >= 640:
|
152 |
+
max_size[0] = 640
|
153 |
+
elif input_img.size[0] < 64:
|
154 |
+
max_size[0] = 64
|
155 |
+
if input_img.size[1] >= 480:
|
156 |
+
max_size[1] = 480
|
157 |
+
elif input_img.size[1] < 32:
|
158 |
+
max_size[1] = 32
|
159 |
+
input_img.thumbnail((max_size[0], max_size[1])) # Bicubic resampling
|
160 |
+
input_imgs.append(input_img)
|
161 |
+
# print("input_img after = ", input_img.size)
|
162 |
+
# cols[0].image(input_img)
|
163 |
+
fig0, axs0 = plt.subplots(1, 1, figsize=(10, 10))
|
164 |
+
# Display the input image
|
165 |
+
axs0.imshow(input_imgs[0])
|
166 |
+
axs0.axis("off")
|
167 |
+
axs0.set_title("Input Image")
|
168 |
+
|
169 |
+
# Display the plot
|
170 |
+
cols[0].pyplot(fig0)
|
171 |
+
cols[0].text(f"Input Image Resized: {max_size[0]} x {max_size[1]}")
|
172 |
+
|
173 |
+
# TODO: show the face features extracted from the image under 'input image' column
|
174 |
+
elif is_video(file_extension):
|
175 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
176 |
+
tfile.write(uploaded_file.read())
|
177 |
+
video_path = tfile.name
|
178 |
+
|
179 |
+
# Extract frames from the video
|
180 |
+
frames = extract_frames(video_path)
|
181 |
+
print(f"Extracted {len(frames)} frames from the video")
|
182 |
+
|
183 |
+
# Process the frames
|
184 |
+
for i, frame in enumerate(frames):
|
185 |
+
input_imgs.append(resize_frame(frame, 640, 480))
|
186 |
+
|
187 |
+
os.remove(video_path)
|
188 |
+
|
189 |
+
fig0, axs0 = plt.subplots(1, 1, figsize=(10, 10))
|
190 |
+
# Display the input image
|
191 |
+
axs0.imshow(input_imgs[0])
|
192 |
+
axs0.axis("off")
|
193 |
+
axs0.set_title("Input Image")
|
194 |
+
|
195 |
+
# Display the plot
|
196 |
+
cols[0].pyplot(fig0)
|
197 |
+
# cols[0].text(f"Input Image Resized: {max_size[0]} x {max_size[1]}")
|
198 |
+
|
199 |
+
st.sidebar.title("Setup")
|
200 |
+
|
201 |
+
# Upscale selection
|
202 |
+
upscale = "-"
|
203 |
+
# upscale = st.sidebar.selectbox(
|
204 |
+
# "Upscale",
|
205 |
+
# ["-"] + UPSCALE,
|
206 |
+
# help="Upscale the uploaded image 2 or 4 times. Keep blank for no upscaling",
|
207 |
+
# )
|
208 |
+
|
209 |
+
# Upscale method selection
|
210 |
+
if upscale != "-":
|
211 |
+
upscale_method_or_model = st.sidebar.selectbox(
|
212 |
+
"Upscale Method / Model",
|
213 |
+
UPSCALE_METHODS + SR_METHODS,
|
214 |
+
help="Select a method or model to upscale the uploaded image",
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
upscale_method_or_model = None
|
218 |
+
|
219 |
+
# Pupil selection
|
220 |
+
pupil_selection = st.sidebar.selectbox(
|
221 |
+
"Pupil Selection",
|
222 |
+
["-"] + LABEL_MAP,
|
223 |
+
help="Select left or right pupil OR keep blank for both pupil diameter estimation",
|
224 |
+
)
|
225 |
+
|
226 |
+
# Model selection
|
227 |
+
tv_model = st.sidebar.selectbox(
|
228 |
+
"Classification model",
|
229 |
+
TV_MODELS,
|
230 |
+
help="Supported Models for Pupil Diameter Estimation",
|
231 |
+
)
|
232 |
+
|
233 |
+
cam_method = "CAM"
|
234 |
+
# cam_method = st.sidebar.selectbox(
|
235 |
+
# "CAM method",
|
236 |
+
# CAM_METHODS,
|
237 |
+
# help="The way your class activation map will be computed",
|
238 |
+
# )
|
239 |
+
# target_layer = st.sidebar.text_input(
|
240 |
+
# "Target layer",
|
241 |
+
# default_layer,
|
242 |
+
# help='If you want to target several layers, add a "+" separator (e.g. "layer3+layer4")',
|
243 |
+
# )
|
244 |
+
|
245 |
+
st.sidebar.write("\n")
|
246 |
+
|
247 |
+
if st.sidebar.button("Predict Diameter & Compute CAM"):
|
248 |
+
if uploaded_file is None:
|
249 |
+
st.sidebar.error("Please upload an image first")
|
250 |
+
|
251 |
+
else:
|
252 |
+
with st.spinner("Analyzing..."):
|
253 |
+
model = None
|
254 |
+
for input_img in input_imgs:
|
255 |
+
if upscale == "-":
|
256 |
+
sr_configs = None
|
257 |
+
else:
|
258 |
+
sr_configs = {
|
259 |
+
"method": upscale_method_or_model,
|
260 |
+
"params": {"upscale": upscale},
|
261 |
+
}
|
262 |
+
config_file = {
|
263 |
+
"sr_configs": sr_configs,
|
264 |
+
"feature_extraction_configs": {
|
265 |
+
"blink_detection": False,
|
266 |
+
"upscale": upscale,
|
267 |
+
"extraction_library": "mediapipe",
|
268 |
+
},
|
269 |
+
}
|
270 |
+
|
271 |
+
img = np.array(input_img)
|
272 |
+
# img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
273 |
+
# if img.shape[0] > max_size or img.shape[1] > max_size:
|
274 |
+
# img = cv2.resize(img, (max_size, max_size))
|
275 |
+
|
276 |
+
ds_results = EyeDentityDatasetCreation(
|
277 |
+
feature_extraction_configs=config_file["feature_extraction_configs"],
|
278 |
+
sr_configs=config_file["sr_configs"],
|
279 |
+
)(img)
|
280 |
+
|
281 |
+
# if ds_results is not None:
|
282 |
+
# print("ds_results = ", ds_results.keys())
|
283 |
+
# NOTE:
|
284 |
+
# ds_results.keys() contains ===> 'full_imgs', 'faces', 'eyes', 'blinks', 'iris'
|
285 |
+
|
286 |
+
preprocess_steps = [
|
287 |
+
transforms.ToTensor(),
|
288 |
+
transforms.Resize(
|
289 |
+
[32, 64],
|
290 |
+
interpolation=transforms.InterpolationMode.BICUBIC,
|
291 |
+
antialias=True,
|
292 |
+
),
|
293 |
+
]
|
294 |
+
preprocess_function = transforms.Compose(preprocess_steps)
|
295 |
+
|
296 |
+
left_eye = None
|
297 |
+
right_eye = None
|
298 |
+
|
299 |
+
if ds_results is None:
|
300 |
+
# print("type of input_img = ", type(input_img))
|
301 |
+
input_img = preprocess_function(input_img)
|
302 |
+
input_img = input_img.unsqueeze(0)
|
303 |
+
if pupil_selection == "left_pupil":
|
304 |
+
left_eye = input_img
|
305 |
+
elif pupil_selection == "right_pupil":
|
306 |
+
right_eye = input_img
|
307 |
+
else:
|
308 |
+
left_eye = input_img
|
309 |
+
right_eye = input_img
|
310 |
+
# print("type of left_eye = ", type(left_eye))
|
311 |
+
# print("type of right_eye = ", type(right_eye))
|
312 |
+
elif "eyes" in ds_results.keys():
|
313 |
+
if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
|
314 |
+
left_eye = ds_results["eyes"]["left_eye"]
|
315 |
+
# print("type of left_eye = ", type(left_eye))
|
316 |
+
left_eye = to_pil_image(left_eye).convert("RGB")
|
317 |
+
# print("type of left_eye = ", type(left_eye))
|
318 |
+
|
319 |
+
left_eye = preprocess_function(left_eye)
|
320 |
+
# print("type of left_eye = ", type(left_eye))
|
321 |
+
|
322 |
+
left_eye = left_eye.unsqueeze(0)
|
323 |
+
if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None:
|
324 |
+
right_eye = ds_results["eyes"]["right_eye"]
|
325 |
+
# print("type of right_eye = ", type(right_eye))
|
326 |
+
right_eye = to_pil_image(right_eye).convert("RGB")
|
327 |
+
# print("type of right_eye = ", type(right_eye))
|
328 |
+
|
329 |
+
right_eye = preprocess_function(right_eye)
|
330 |
+
# print("type of right_eye = ", type(right_eye))
|
331 |
+
|
332 |
+
right_eye = right_eye.unsqueeze(0)
|
333 |
+
else:
|
334 |
+
# print("type of input_img = ", type(input_img))
|
335 |
+
input_img = preprocess_function(input_img)
|
336 |
+
input_img = input_img.unsqueeze(0)
|
337 |
+
if pupil_selection == "left_pupil":
|
338 |
+
left_eye = input_img
|
339 |
+
elif pupil_selection == "right_pupil":
|
340 |
+
right_eye = input_img
|
341 |
+
else:
|
342 |
+
left_eye = input_img
|
343 |
+
right_eye = input_img
|
344 |
+
# print("type of left_eye = ", type(left_eye))
|
345 |
+
# print("type of right_eye = ", type(right_eye))
|
346 |
+
|
347 |
+
# print("left_eye = ", left_eye.shape)
|
348 |
+
# print("right_eye = ", right_eye.shape)
|
349 |
+
|
350 |
+
if pupil_selection == "-":
|
351 |
+
selected_eyes = ["left_eye", "right_eye"]
|
352 |
+
elif pupil_selection == "left_pupil":
|
353 |
+
selected_eyes = ["left_eye"]
|
354 |
+
elif pupil_selection == "right_pupil":
|
355 |
+
selected_eyes = ["right_eye"]
|
356 |
+
|
357 |
+
for eye_type in selected_eyes:
|
358 |
+
|
359 |
+
if model is None:
|
360 |
+
model_configs = {
|
361 |
+
"model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt",
|
362 |
+
"registered_model_name": tv_model,
|
363 |
+
"num_classes": 1,
|
364 |
+
}
|
365 |
+
registered_model_name = model_configs["registered_model_name"]
|
366 |
+
model = _load_model(model_configs)
|
367 |
+
|
368 |
+
if registered_model_name == "ResNet18":
|
369 |
+
target_layer = model.resnet.layer4[-1].conv2
|
370 |
+
elif registered_model_name == "ResNet50":
|
371 |
+
target_layer = model.resnet.layer4[-1].conv3
|
372 |
+
else:
|
373 |
+
raise Exception(f"No target layer available for selected model: {registered_model_name}")
|
374 |
+
|
375 |
+
if left_eye is not None and eye_type == "left_eye":
|
376 |
+
input_img = left_eye
|
377 |
+
elif right_eye is not None and eye_type == "right_eye":
|
378 |
+
input_img = right_eye
|
379 |
+
else:
|
380 |
+
raise Exception("Wrong Data")
|
381 |
+
|
382 |
+
if cam_method is not None:
|
383 |
+
cam_extractor = torchcam_methods.__dict__[cam_method](
|
384 |
+
model,
|
385 |
+
target_layer=target_layer,
|
386 |
+
fc_layer=model.resnet.fc,
|
387 |
+
input_shape=input_img.shape,
|
388 |
+
)
|
389 |
+
|
390 |
+
# with torch.no_grad():
|
391 |
+
out = model(input_img)
|
392 |
+
cols[-1].markdown(
|
393 |
+
f"<h3>Predicted Pupil Diameter: {out[0].item():.2f} mm</h3>",
|
394 |
+
unsafe_allow_html=True,
|
395 |
+
)
|
396 |
+
# cols[-1].text(f"Predicted Pupil Diameter: {out[0].item():.2f}")
|
397 |
+
|
398 |
+
# Retrieve the CAM
|
399 |
+
act_maps = cam_extractor(0, out)
|
400 |
+
|
401 |
+
# Fuse the CAMs if there are several
|
402 |
+
activation_map = act_maps[0] if len(act_maps) == 1 else cam_extractor.fuse_cams(act_maps)
|
403 |
+
|
404 |
+
# Convert input image and activation map to PIL images
|
405 |
+
input_image_pil = to_pil_image(input_img.squeeze(0))
|
406 |
+
activation_map_pil = to_pil_image(activation_map, mode="F")
|
407 |
+
|
408 |
+
# Create the overlayed CAM result
|
409 |
+
result = overlay_mask(
|
410 |
+
input_image_pil,
|
411 |
+
activation_map_pil,
|
412 |
+
alpha=0.5,
|
413 |
+
)
|
414 |
+
|
415 |
+
# Create a subplot with 1 row and 2 columns
|
416 |
+
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
|
417 |
+
|
418 |
+
# Display the input image
|
419 |
+
axs[0].imshow(input_image_pil)
|
420 |
+
axs[0].axis("off")
|
421 |
+
axs[0].set_title("Input Image")
|
422 |
+
|
423 |
+
# Display the overlayed CAM result
|
424 |
+
axs[1].imshow(result)
|
425 |
+
axs[1].axis("off")
|
426 |
+
axs[1].set_title("Overlayed CAM")
|
427 |
+
|
428 |
+
# Display the plot
|
429 |
+
cols[-1].pyplot(fig)
|
430 |
+
cols[-1].text(f"eye image size: {input_img.shape[-1]} x {input_img.shape[-2]}")
|
431 |
+
|
432 |
+
|
433 |
+
if __name__ == "__main__":
|
434 |
+
main()
|
app_utils.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
from io import BytesIO
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import cv2
|
6 |
+
from matplotlib import pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
import streamlit as st
|
9 |
+
import torch
|
10 |
+
import tempfile
|
11 |
+
from PIL import Image
|
12 |
+
from torchvision.transforms.functional import to_pil_image
|
13 |
+
from torchvision import transforms
|
14 |
+
|
15 |
+
from torchcam.methods import CAM
|
16 |
+
from torchcam import methods as torchcam_methods
|
17 |
+
from torchcam.utils import overlay_mask
|
18 |
+
import os.path as osp
|
19 |
+
|
20 |
+
root_path = osp.abspath(osp.join(__file__, osp.pardir))
|
21 |
+
sys.path.append(root_path)
|
22 |
+
|
23 |
+
from preprocessing.dataset_creation import EyeDentityDatasetCreation
|
24 |
+
from utils import get_model
|
25 |
+
|
26 |
+
|
27 |
+
@torch.no_grad()
|
28 |
+
def load_model(model_configs, device="cpu"):
|
29 |
+
"""Loads the pre-trained model."""
|
30 |
+
model_path = os.path.join(root_path, model_configs["model_path"])
|
31 |
+
model_dict = torch.load(model_path, map_location=device)
|
32 |
+
model = get_model(model_configs=model_configs)
|
33 |
+
model.load_state_dict(model_dict)
|
34 |
+
model = model.to(device).eval()
|
35 |
+
return model
|
36 |
+
|
37 |
+
|
38 |
+
def extract_frames(video_path):
|
39 |
+
"""Extracts frames from a video file."""
|
40 |
+
vidcap = cv2.VideoCapture(video_path)
|
41 |
+
frames = []
|
42 |
+
success, image = vidcap.read()
|
43 |
+
while success:
|
44 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
45 |
+
frames.append(image_rgb)
|
46 |
+
success, image = vidcap.read()
|
47 |
+
vidcap.release()
|
48 |
+
return frames
|
49 |
+
|
50 |
+
|
51 |
+
def resize_frame(image, max_width=640, max_height=480):
|
52 |
+
if not isinstance(image, Image.Image):
|
53 |
+
image = Image.fromarray(image)
|
54 |
+
original_size = image.size
|
55 |
+
|
56 |
+
# Resize the frame similarly to the image resizing logic
|
57 |
+
if original_size[0] == original_size[1] and original_size[0] >= 256:
|
58 |
+
max_size = (256, 256)
|
59 |
+
else:
|
60 |
+
max_size = list(original_size)
|
61 |
+
if original_size[0] >= max_width:
|
62 |
+
max_size[0] = max_width
|
63 |
+
elif original_size[0] < 64:
|
64 |
+
max_size[0] = 64
|
65 |
+
if original_size[1] >= max_height:
|
66 |
+
max_size[1] = max_height
|
67 |
+
elif original_size[1] < 32:
|
68 |
+
max_size[1] = 32
|
69 |
+
|
70 |
+
image.thumbnail(max_size)
|
71 |
+
# image = image.resize(max_size)
|
72 |
+
return image
|
73 |
+
|
74 |
+
|
75 |
+
def is_image(file_extension):
|
76 |
+
"""Checks if the file is an image."""
|
77 |
+
return file_extension.lower() in ["png", "jpeg", "jpg"]
|
78 |
+
|
79 |
+
|
80 |
+
def is_video(file_extension):
|
81 |
+
"""Checks if the file is a video."""
|
82 |
+
return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"]
|
83 |
+
|
84 |
+
|
85 |
+
def display_results(input_image, cam_frame, pupil_diameter, cols):
|
86 |
+
"""Displays the input image and overlayed CAM result."""
|
87 |
+
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
|
88 |
+
axs[0].imshow(input_image)
|
89 |
+
axs[0].axis("off")
|
90 |
+
axs[0].set_title("Input Image")
|
91 |
+
axs[1].imshow(cam_frame)
|
92 |
+
axs[1].axis("off")
|
93 |
+
axs[1].set_title("Overlayed CAM")
|
94 |
+
cols[-1].pyplot(fig)
|
95 |
+
cols[-1].text(f"Pupil Diameter: {pupil_diameter:.2f} mm")
|
96 |
+
|
97 |
+
|
98 |
+
def preprocess_image(input_img, max_size=(256, 256)):
|
99 |
+
"""Resizes and preprocesses an image."""
|
100 |
+
input_img.thumbnail(max_size)
|
101 |
+
preprocess_steps = [
|
102 |
+
transforms.ToTensor(),
|
103 |
+
transforms.Resize([32, 64], interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
|
104 |
+
]
|
105 |
+
return transforms.Compose(preprocess_steps)(input_img).unsqueeze(0)
|
106 |
+
|
107 |
+
|
108 |
+
def overlay_text_on_frame(frame, text, position=(16, 20)):
|
109 |
+
"""Write text on the image frame using OpenCV."""
|
110 |
+
return cv2.putText(frame, text, position, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA)
|
111 |
+
|
112 |
+
|
113 |
+
def process_frames(input_imgs, tv_model, pupil_selection, cam_method):
|
114 |
+
upscale = "-"
|
115 |
+
upscale_method_or_model = "-"
|
116 |
+
if upscale == "-":
|
117 |
+
sr_configs = None
|
118 |
+
else:
|
119 |
+
sr_configs = {
|
120 |
+
"method": upscale_method_or_model,
|
121 |
+
"params": {"upscale": upscale},
|
122 |
+
}
|
123 |
+
config_file = {
|
124 |
+
"sr_configs": sr_configs,
|
125 |
+
"feature_extraction_configs": {
|
126 |
+
"blink_detection": False,
|
127 |
+
"upscale": upscale,
|
128 |
+
"extraction_library": "mediapipe",
|
129 |
+
},
|
130 |
+
}
|
131 |
+
left_pupil_model = None
|
132 |
+
right_pupil_model = None
|
133 |
+
face_frames = []
|
134 |
+
output_frames = {}
|
135 |
+
input_frames = {}
|
136 |
+
predicted_diameters = {}
|
137 |
+
|
138 |
+
if pupil_selection == "both":
|
139 |
+
selected_eyes = ["left_eye", "right_eye"]
|
140 |
+
|
141 |
+
elif pupil_selection == "left_pupil":
|
142 |
+
selected_eyes = ["left_eye"]
|
143 |
+
|
144 |
+
elif pupil_selection == "right_pupil":
|
145 |
+
selected_eyes = ["right_eye"]
|
146 |
+
|
147 |
+
for eye_type in selected_eyes:
|
148 |
+
model_configs = {
|
149 |
+
"model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt",
|
150 |
+
"registered_model_name": tv_model,
|
151 |
+
"num_classes": 1,
|
152 |
+
}
|
153 |
+
if eye_type == "left_eye":
|
154 |
+
left_pupil_model = load_model(model_configs)
|
155 |
+
left_pupil_cam_extractor = None
|
156 |
+
output_frames[eye_type] = []
|
157 |
+
input_frames[eye_type] = []
|
158 |
+
predicted_diameters[eye_type] = []
|
159 |
+
else:
|
160 |
+
right_pupil_model = load_model(model_configs)
|
161 |
+
right_pupil_cam_extractor = None
|
162 |
+
output_frames[eye_type] = []
|
163 |
+
input_frames[eye_type] = []
|
164 |
+
predicted_diameters[eye_type] = []
|
165 |
+
|
166 |
+
ds_creation = EyeDentityDatasetCreation(
|
167 |
+
feature_extraction_configs=config_file["feature_extraction_configs"],
|
168 |
+
sr_configs=config_file["sr_configs"],
|
169 |
+
)
|
170 |
+
|
171 |
+
preprocess_steps = [
|
172 |
+
transforms.ToTensor(),
|
173 |
+
transforms.Resize(
|
174 |
+
[32, 64],
|
175 |
+
interpolation=transforms.InterpolationMode.BICUBIC,
|
176 |
+
antialias=True,
|
177 |
+
),
|
178 |
+
]
|
179 |
+
preprocess_function = transforms.Compose(preprocess_steps)
|
180 |
+
|
181 |
+
for input_img in input_imgs:
|
182 |
+
|
183 |
+
img = np.array(input_img)
|
184 |
+
ds_results = ds_creation(img)
|
185 |
+
|
186 |
+
left_eye = None
|
187 |
+
right_eye = None
|
188 |
+
blinked = False
|
189 |
+
|
190 |
+
if ds_results is not None and "face" in ds_results:
|
191 |
+
face_img = to_pil_image(ds_results["face"])
|
192 |
+
has_face = True
|
193 |
+
else:
|
194 |
+
face_img = to_pil_image(np.zeros((256, 256, 3), dtype=np.uint8))
|
195 |
+
has_face = False
|
196 |
+
face_frames.append({"has_face": has_face, "img": face_img})
|
197 |
+
|
198 |
+
if ds_results is not None and "eyes" in ds_results.keys():
|
199 |
+
blinked = ds_results["eyes"]["blinked"]
|
200 |
+
if not blinked:
|
201 |
+
if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
|
202 |
+
left_eye = ds_results["eyes"]["left_eye"]
|
203 |
+
left_eye = to_pil_image(left_eye).convert("RGB")
|
204 |
+
left_eye = preprocess_function(left_eye)
|
205 |
+
left_eye = left_eye.unsqueeze(0)
|
206 |
+
if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None:
|
207 |
+
right_eye = ds_results["eyes"]["right_eye"]
|
208 |
+
right_eye = to_pil_image(right_eye).convert("RGB")
|
209 |
+
right_eye = preprocess_function(right_eye)
|
210 |
+
right_eye = right_eye.unsqueeze(0)
|
211 |
+
else:
|
212 |
+
input_img = preprocess_function(input_img)
|
213 |
+
input_img = input_img.unsqueeze(0)
|
214 |
+
if pupil_selection == "left_pupil":
|
215 |
+
left_eye = input_img
|
216 |
+
elif pupil_selection == "right_pupil":
|
217 |
+
right_eye = input_img
|
218 |
+
else:
|
219 |
+
left_eye = input_img
|
220 |
+
right_eye = input_img
|
221 |
+
|
222 |
+
for eye_type in selected_eyes:
|
223 |
+
if left_eye is not None and eye_type == "left_eye":
|
224 |
+
if left_pupil_cam_extractor is None:
|
225 |
+
if tv_model == "ResNet18":
|
226 |
+
target_layer = left_pupil_model.resnet.layer4[-1].conv2
|
227 |
+
elif tv_model == "ResNet50":
|
228 |
+
target_layer = left_pupil_model.resnet.layer4[-1].conv3
|
229 |
+
else:
|
230 |
+
raise Exception(f"No target layer available for selected model: {tv_model}")
|
231 |
+
left_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
|
232 |
+
left_pupil_model,
|
233 |
+
target_layer=target_layer,
|
234 |
+
fc_layer=left_pupil_model.resnet.fc,
|
235 |
+
input_shape=left_eye.shape,
|
236 |
+
)
|
237 |
+
output = left_pupil_model(left_eye)
|
238 |
+
predicted_diameter = output[0].item()
|
239 |
+
act_maps = left_pupil_cam_extractor(0, output)
|
240 |
+
activation_map = act_maps[0] if len(act_maps) == 1 else left_pupil_cam_extractor.fuse_cams(act_maps)
|
241 |
+
input_image_pil = to_pil_image(left_eye.squeeze(0))
|
242 |
+
elif right_eye is not None and eye_type == "right_eye":
|
243 |
+
if right_pupil_cam_extractor is None:
|
244 |
+
if tv_model == "ResNet18":
|
245 |
+
target_layer = right_pupil_model.resnet.layer4[-1].conv2
|
246 |
+
elif tv_model == "ResNet50":
|
247 |
+
target_layer = right_pupil_model.resnet.layer4[-1].conv3
|
248 |
+
else:
|
249 |
+
raise Exception(f"No target layer available for selected model: {tv_model}")
|
250 |
+
right_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
|
251 |
+
right_pupil_model,
|
252 |
+
target_layer=target_layer,
|
253 |
+
fc_layer=right_pupil_model.resnet.fc,
|
254 |
+
input_shape=right_eye.shape,
|
255 |
+
)
|
256 |
+
output = right_pupil_model(right_eye)
|
257 |
+
predicted_diameter = output[0].item()
|
258 |
+
act_maps = right_pupil_cam_extractor(0, output)
|
259 |
+
activation_map = act_maps[0] if len(act_maps) == 1 else right_pupil_cam_extractor.fuse_cams(act_maps)
|
260 |
+
input_image_pil = to_pil_image(right_eye.squeeze(0))
|
261 |
+
|
262 |
+
if blinked:
|
263 |
+
zeros_img = to_pil_image(np.zeros((256, 256, 3), dtype=np.uint8))
|
264 |
+
input_image_pil = zeros_img
|
265 |
+
result = zeros_img
|
266 |
+
predicted_diameter = 0
|
267 |
+
else:
|
268 |
+
# Create CAM overlay
|
269 |
+
activation_map_pil = to_pil_image(activation_map, mode="F")
|
270 |
+
result = overlay_mask(input_image_pil, activation_map_pil, alpha=0.5)
|
271 |
+
|
272 |
+
# Add frame and predicted diameter to lists
|
273 |
+
input_frames[eye_type].append(np.array(input_image_pil))
|
274 |
+
output_frames[eye_type].append(np.array(result))
|
275 |
+
predicted_diameters[eye_type].append(predicted_diameter)
|
276 |
+
|
277 |
+
return input_frames, output_frames, predicted_diameters, face_frames
|
278 |
+
|
279 |
+
|
280 |
+
# Function to display video with autoplay and loop
|
281 |
+
def display_video_with_autoplay(video_col, video_path):
|
282 |
+
video_html = f"""
|
283 |
+
<video width="100%" height="auto" autoplay loop muted>
|
284 |
+
<source src="data:video/mp4;base64,{video_path}" type="video/mp4">
|
285 |
+
</video>
|
286 |
+
"""
|
287 |
+
video_col.markdown(video_html, unsafe_allow_html=True)
|
288 |
+
|
289 |
+
|
290 |
+
def get_codec_and_extension(file_format):
|
291 |
+
"""Return codec and file extension based on the format."""
|
292 |
+
if file_format == "mp4":
|
293 |
+
return "H264", ".mp4"
|
294 |
+
elif file_format == "avi":
|
295 |
+
return "MJPG", ".avi"
|
296 |
+
elif file_format == "webm":
|
297 |
+
return "VP80", ".webm"
|
298 |
+
else:
|
299 |
+
return "MJPG", ".avi"
|
300 |
+
|
301 |
+
|
302 |
+
def process_video(cols, video_frames, tv_model, pupil_selection, output_path, cam_method):
|
303 |
+
|
304 |
+
resized_frames = []
|
305 |
+
for i, frame in enumerate(video_frames):
|
306 |
+
input_img = resize_frame(frame, max_width=640, max_height=480)
|
307 |
+
# input_img = Image.fromarray(input_img)
|
308 |
+
resized_frames.append(input_img)
|
309 |
+
|
310 |
+
input_frames, output_frames, predicted_diameters, face_frames = process_frames(
|
311 |
+
resized_frames, tv_model, pupil_selection, cam_method
|
312 |
+
)
|
313 |
+
|
314 |
+
file_format = output_path.split(".")[-1]
|
315 |
+
codec, extension = get_codec_and_extension(file_format)
|
316 |
+
|
317 |
+
video_cols = cols[1].columns(len(input_frames.keys()))
|
318 |
+
|
319 |
+
for i, eye_type in enumerate(input_frames.keys()):
|
320 |
+
in_frames = input_frames[eye_type]
|
321 |
+
height, width, _ = in_frames[0].shape
|
322 |
+
fourcc = cv2.VideoWriter_fourcc(*codec)
|
323 |
+
fps = 10.0
|
324 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
325 |
+
for frame in in_frames:
|
326 |
+
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
327 |
+
out.release()
|
328 |
+
|
329 |
+
with open(output_path, "rb") as video_file:
|
330 |
+
video_bytes = video_file.read()
|
331 |
+
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
332 |
+
display_video_with_autoplay(video_cols[i], video_base64)
|
333 |
+
|
334 |
+
os.remove(output_path)
|
335 |
+
|
336 |
+
for i, eye_type in enumerate(output_frames.keys()):
|
337 |
+
out_frames = output_frames[eye_type]
|
338 |
+
height, width, _ = out_frames[0].shape
|
339 |
+
fourcc = cv2.VideoWriter_fourcc(*codec)
|
340 |
+
fps = 10.0
|
341 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
342 |
+
for j, frame in enumerate(out_frames):
|
343 |
+
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
344 |
+
out.release()
|
345 |
+
|
346 |
+
with open(output_path, "rb") as video_file:
|
347 |
+
video_bytes = video_file.read()
|
348 |
+
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
349 |
+
display_video_with_autoplay(video_cols[i], video_base64)
|
350 |
+
|
351 |
+
os.remove(output_path)
|
352 |
+
|
353 |
+
for i, eye_type in enumerate(output_frames.keys()):
|
354 |
+
|
355 |
+
out_frames = output_frames[eye_type]
|
356 |
+
height, width, _ = out_frames[0].shape
|
357 |
+
fourcc = cv2.VideoWriter_fourcc(*codec)
|
358 |
+
fps = 10.0
|
359 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
360 |
+
|
361 |
+
for diameter in predicted_diameters[eye_type]:
|
362 |
+
frame = np.zeros((height, width, 3), dtype=np.uint8)
|
363 |
+
text = f"{diameter:.2f}"
|
364 |
+
frame = overlay_text_on_frame(frame, text)
|
365 |
+
out.write(frame)
|
366 |
+
out.release()
|
367 |
+
|
368 |
+
with open(output_path, "rb") as video_file:
|
369 |
+
video_bytes = video_file.read()
|
370 |
+
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
371 |
+
display_video_with_autoplay(video_cols[i], video_base64)
|
372 |
+
os.remove(output_path)
|
373 |
+
|
374 |
+
return predicted_diameters
|
config.yml
CHANGED
@@ -2,8 +2,9 @@ seed: 42
|
|
2 |
|
3 |
feature_extraction_configs:
|
4 |
blink_detection: true
|
|
|
5 |
extraction_library: "mediapipe"
|
6 |
-
show_features: ['
|
7 |
|
8 |
model_configs:
|
9 |
models_path: "pre_trained_models"
|
|
|
2 |
|
3 |
feature_extraction_configs:
|
4 |
blink_detection: true
|
5 |
+
upscale: 1
|
6 |
extraction_library: "mediapipe"
|
7 |
+
show_features: ['faces', 'eyes', 'blinks']
|
8 |
|
9 |
model_configs:
|
10 |
models_path: "pre_trained_models"
|
feature_extraction/extractor_mediapipe.py
CHANGED
@@ -18,9 +18,7 @@ class ExtractorMediaPipe:
|
|
18 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
|
20 |
# ========== Face Extraction ==========
|
21 |
-
self.face_detector = mp.solutions.face_detection.FaceDetection(
|
22 |
-
model_selection=0, min_detection_confidence=0.5
|
23 |
-
)
|
24 |
self.face_mesh = mp.solutions.face_mesh.FaceMesh(
|
25 |
max_num_faces=1,
|
26 |
static_image_mode=True,
|
@@ -169,19 +167,11 @@ class ExtractorMediaPipe:
|
|
169 |
left_eye_landmark3 = landmarks[left_indices[12]]
|
170 |
left_eye_landmark4 = landmarks[left_indices[4]]
|
171 |
|
172 |
-
right_eye_horizontal_distance = self.euclideanDistance(
|
173 |
-
|
174 |
-
)
|
175 |
-
right_eye_vertical_distance = self.euclideanDistance(
|
176 |
-
right_eye_landmark3, right_eye_landmark4
|
177 |
-
)
|
178 |
|
179 |
-
left_eye_vertical_distance = self.euclideanDistance(
|
180 |
-
|
181 |
-
)
|
182 |
-
left_eye_horizontal_distance = self.euclideanDistance(
|
183 |
-
left_eye_landmark1, left_eye_landmark2
|
184 |
-
)
|
185 |
|
186 |
right_eye_ratio = right_eye_vertical_distance / right_eye_horizontal_distance
|
187 |
left_eye_ratio = left_eye_vertical_distance / left_eye_horizontal_distance
|
@@ -192,10 +182,7 @@ class ExtractorMediaPipe:
|
|
192 |
|
193 |
def extract_eyes_regions(self, image, landmarks, eye_indices):
|
194 |
h, w, _ = image.shape
|
195 |
-
points = [
|
196 |
-
(int(landmarks[idx].x * w), int(landmarks[idx].y * h))
|
197 |
-
for idx in eye_indices
|
198 |
-
]
|
199 |
|
200 |
x_min = min([p[0] for p in points])
|
201 |
x_max = max([p[0] for p in points])
|
@@ -261,21 +248,14 @@ class ExtractorMediaPipe:
|
|
261 |
|
262 |
if blink_detection:
|
263 |
mesh_coordinates = self.landmarksDetection(image, results, False)
|
264 |
-
eyes_ratio = self.blinkRatio(
|
265 |
-
|
266 |
-
)
|
267 |
-
if (
|
268 |
-
eyes_ratio > self.blink_lower_thresh
|
269 |
-
and eyes_ratio <= self.blink_upper_thresh
|
270 |
-
):
|
271 |
# print(
|
272 |
# "I think person blinked. eyes_ratio = ",
|
273 |
# eyes_ratio,
|
274 |
# "Confirming with ViT model...",
|
275 |
# )
|
276 |
-
blinked = self.blink_detection_model(
|
277 |
-
left_eye=left_eye, right_eye=right_eye
|
278 |
-
)
|
279 |
# if blinked:
|
280 |
# print("Yes, person blinked. Confirmed by model")
|
281 |
# else:
|
@@ -298,9 +278,7 @@ class ExtractorMediaPipe:
|
|
298 |
iris_img_blur = cv2.GaussianBlur(iris_img_gray, (5, 5), 0)
|
299 |
|
300 |
# Perform adaptive thresholding
|
301 |
-
_, iris_img_mask = cv2.threshold(
|
302 |
-
iris_img_blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
303 |
-
)
|
304 |
|
305 |
# Invert the mask
|
306 |
segmented_mask = cv2.bitwise_not(iris_img_mask)
|
@@ -335,9 +313,7 @@ class ExtractorMediaPipe:
|
|
335 |
|
336 |
cropped_left_iris = image[l_y1:l_y2, l_x1:l_x2]
|
337 |
|
338 |
-
left_iris_segmented_data = self.segment_iris(
|
339 |
-
cv2.cvtColor(cropped_left_iris, cv2.COLOR_BGR2RGB)
|
340 |
-
)
|
341 |
|
342 |
# Crop the right iris to be exactly 16*upscaled x 16*upscaled
|
343 |
r_x1 = max(int(r_cx) - (8 * self.upscale), 0)
|
@@ -347,9 +323,7 @@ class ExtractorMediaPipe:
|
|
347 |
|
348 |
cropped_right_iris = image[r_y1:r_y2, r_x1:r_x2]
|
349 |
|
350 |
-
right_iris_segmented_data = self.segment_iris(
|
351 |
-
cv2.cvtColor(cropped_right_iris, cv2.COLOR_BGR2RGB)
|
352 |
-
)
|
353 |
|
354 |
return {
|
355 |
"left_iris": {
|
|
|
18 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
|
20 |
# ========== Face Extraction ==========
|
21 |
+
self.face_detector = mp.solutions.face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5)
|
|
|
|
|
22 |
self.face_mesh = mp.solutions.face_mesh.FaceMesh(
|
23 |
max_num_faces=1,
|
24 |
static_image_mode=True,
|
|
|
167 |
left_eye_landmark3 = landmarks[left_indices[12]]
|
168 |
left_eye_landmark4 = landmarks[left_indices[4]]
|
169 |
|
170 |
+
right_eye_horizontal_distance = self.euclideanDistance(right_eye_landmark1, right_eye_landmark2)
|
171 |
+
right_eye_vertical_distance = self.euclideanDistance(right_eye_landmark3, right_eye_landmark4)
|
|
|
|
|
|
|
|
|
172 |
|
173 |
+
left_eye_vertical_distance = self.euclideanDistance(left_eye_landmark3, left_eye_landmark4)
|
174 |
+
left_eye_horizontal_distance = self.euclideanDistance(left_eye_landmark1, left_eye_landmark2)
|
|
|
|
|
|
|
|
|
175 |
|
176 |
right_eye_ratio = right_eye_vertical_distance / right_eye_horizontal_distance
|
177 |
left_eye_ratio = left_eye_vertical_distance / left_eye_horizontal_distance
|
|
|
182 |
|
183 |
def extract_eyes_regions(self, image, landmarks, eye_indices):
|
184 |
h, w, _ = image.shape
|
185 |
+
points = [(int(landmarks[idx].x * w), int(landmarks[idx].y * h)) for idx in eye_indices]
|
|
|
|
|
|
|
186 |
|
187 |
x_min = min([p[0] for p in points])
|
188 |
x_max = max([p[0] for p in points])
|
|
|
248 |
|
249 |
if blink_detection:
|
250 |
mesh_coordinates = self.landmarksDetection(image, results, False)
|
251 |
+
eyes_ratio = self.blinkRatio(mesh_coordinates, self.RIGHT_EYE, self.LEFT_EYE)
|
252 |
+
if eyes_ratio > self.blink_lower_thresh and eyes_ratio <= self.blink_upper_thresh:
|
|
|
|
|
|
|
|
|
|
|
253 |
# print(
|
254 |
# "I think person blinked. eyes_ratio = ",
|
255 |
# eyes_ratio,
|
256 |
# "Confirming with ViT model...",
|
257 |
# )
|
258 |
+
blinked = self.blink_detection_model(left_eye=left_eye, right_eye=right_eye)
|
|
|
|
|
259 |
# if blinked:
|
260 |
# print("Yes, person blinked. Confirmed by model")
|
261 |
# else:
|
|
|
278 |
iris_img_blur = cv2.GaussianBlur(iris_img_gray, (5, 5), 0)
|
279 |
|
280 |
# Perform adaptive thresholding
|
281 |
+
_, iris_img_mask = cv2.threshold(iris_img_blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
|
|
|
|
282 |
|
283 |
# Invert the mask
|
284 |
segmented_mask = cv2.bitwise_not(iris_img_mask)
|
|
|
313 |
|
314 |
cropped_left_iris = image[l_y1:l_y2, l_x1:l_x2]
|
315 |
|
316 |
+
left_iris_segmented_data = self.segment_iris(cv2.cvtColor(cropped_left_iris, cv2.COLOR_BGR2RGB))
|
|
|
|
|
317 |
|
318 |
# Crop the right iris to be exactly 16*upscaled x 16*upscaled
|
319 |
r_x1 = max(int(r_cx) - (8 * self.upscale), 0)
|
|
|
323 |
|
324 |
cropped_right_iris = image[r_y1:r_y2, r_x1:r_x2]
|
325 |
|
326 |
+
right_iris_segmented_data = self.segment_iris(cv2.cvtColor(cropped_right_iris, cv2.COLOR_BGR2RGB))
|
|
|
|
|
327 |
|
328 |
return {
|
329 |
"left_iris": {
|
feature_extraction/features_extractor.py
CHANGED
@@ -14,9 +14,7 @@ warnings.filterwarnings("ignore")
|
|
14 |
|
15 |
class FeaturesExtractor:
|
16 |
|
17 |
-
def __init__(
|
18 |
-
self, extraction_library="mediapipe", blink_detection=False, upscale=1
|
19 |
-
):
|
20 |
self.upscale = upscale
|
21 |
self.blink_detection = blink_detection
|
22 |
self.extraction_library = extraction_library
|
|
|
14 |
|
15 |
class FeaturesExtractor:
|
16 |
|
17 |
+
def __init__(self, extraction_library="mediapipe", blink_detection=False, upscale=1):
|
|
|
|
|
18 |
self.upscale = upscale
|
19 |
self.blink_detection = blink_detection
|
20 |
self.extraction_library = extraction_library
|
image.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
# Load the original face image
|
5 |
+
face_image = cv2.imread("path_to_face_image.jpg")
|
6 |
+
|
7 |
+
# Suppose CAM_left and CAM_right are the CAM results for the eyes (each 32x64)
|
8 |
+
CAM_left = cv2.imread("path_to_CAM_left.jpg") # or generated by your model
|
9 |
+
CAM_right = cv2.imread("path_to_CAM_right.jpg") # or generated by your model
|
10 |
+
|
11 |
+
# Example bounding boxes for the left and right eye
|
12 |
+
left_eye_bbox = (x_left, y_left, width_left, height_left)
|
13 |
+
right_eye_bbox = (x_right, y_right, width_right, height_right)
|
14 |
+
|
15 |
+
# Resize CAM images if needed (they should be 32x64, but resize to match bbox size)
|
16 |
+
CAM_left_resized = cv2.resize(CAM_left, (width_left, height_left))
|
17 |
+
CAM_right_resized = cv2.resize(CAM_right, (width_right, height_right))
|
18 |
+
|
19 |
+
# Create a copy of the face image to overlay the CAM results
|
20 |
+
face_with_CAM = face_image.copy()
|
21 |
+
|
22 |
+
# Overlay left eye CAM
|
23 |
+
face_with_CAM[y_left : y_left + height_left, x_left : x_left + width_left] = CAM_left_resized
|
24 |
+
|
25 |
+
# Overlay right eye CAM
|
26 |
+
face_with_CAM[y_right : y_right + height_right, x_right : x_right + width_right] = CAM_right_resized
|
27 |
+
|
28 |
+
# Save or display the result
|
29 |
+
cv2.imwrite("face_with_CAM_overlay.jpg", face_with_CAM)
|
30 |
+
cv2.imshow("Face with CAM Overlay", face_with_CAM)
|
31 |
+
cv2.waitKey(0)
|
32 |
+
cv2.destroyAllWindows()
|
video.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# Load the video
|
5 |
+
video_path = "path_to_video.mp4"
|
6 |
+
cap = cv2.VideoCapture(video_path)
|
7 |
+
|
8 |
+
# Video properties
|
9 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
10 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
11 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
12 |
+
|
13 |
+
# Create a VideoWriter object for the output video
|
14 |
+
out = cv2.VideoWriter("output_with_CAM.mp4", cv2.VideoWriter_fourcc(*"mp4v"), fps, (frame_width, frame_height))
|
15 |
+
|
16 |
+
# Process each frame
|
17 |
+
while True:
|
18 |
+
ret, frame = cap.read()
|
19 |
+
if not ret:
|
20 |
+
break # End of the video
|
21 |
+
|
22 |
+
# Detect landmarks for left and right eye bounding boxes (example)
|
23 |
+
left_eye_bbox = (x_left, y_left, width_left, height_left)
|
24 |
+
right_eye_bbox = (x_right, y_right, width_right, height_right)
|
25 |
+
|
26 |
+
# Crop the eyes
|
27 |
+
left_eye = frame[y_left : y_left + height_left, x_left : x_left + width_left]
|
28 |
+
right_eye = frame[y_right : y_right + height_right, x_right : x_right + width_right]
|
29 |
+
|
30 |
+
# Generate CAMs for left and right eyes
|
31 |
+
CAM_left = generate_CAM(left_eye) # Use your model here
|
32 |
+
CAM_right = generate_CAM(right_eye) # Use your model here
|
33 |
+
|
34 |
+
# Resize CAMs if necessary
|
35 |
+
CAM_left_resized = cv2.resize(CAM_left, (width_left, height_left))
|
36 |
+
CAM_right_resized = cv2.resize(CAM_right, (width_right, height_right))
|
37 |
+
|
38 |
+
# Overlay the CAMs onto the original frame
|
39 |
+
frame[y_left : y_left + height_left, x_left : x_left + width_left] = CAM_left_resized
|
40 |
+
frame[y_right : y_right + height_right, x_right : x_right + width_right] = CAM_right_resized
|
41 |
+
|
42 |
+
# Write the processed frame to the output video
|
43 |
+
out.write(frame)
|
44 |
+
|
45 |
+
# Release resources
|
46 |
+
cap.release()
|
47 |
+
out.release()
|
48 |
+
cv2.destroyAllWindows()
|