vaishanthr's picture
updated code files
00ab2e7
raw
history blame
9.21 kB
from ultralytics import YOLO
import cv2
import gradio as gr
import numpy as np
import os
import torch
import utils
import plotly.graph_objects as go
from image_segmenter import ImageSegmenter
from monocular_depth_estimator import MonocularDepthEstimator
from point_cloud_generator import display_pcd
# params
CANCEL_PROCESSING = False
img_seg = ImageSegmenter(model_type="yolov8s-seg")
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
def process_image(image):
image = utils.resize(image)
image_segmentation, objects_data = img_seg.predict(image)
depthmap, depth_colormap = depth_estimator.make_prediction(image)
dist_image = utils.draw_depth_info(image, depthmap, objects_data)
objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
plot_fig = display_pcd(objs_pcd)
return image_segmentation, depth_colormap, dist_image, plot_fig
def test_process_img(image):
image = utils.resize(image)
image_segmentation, objects_data = img_seg.predict(image)
depthmap, depth_colormap = depth_estimator.make_prediction(image)
return image_segmentation, objects_data, depthmap, depth_colormap
def process_video(vid_path=None):
vid_cap = cv2.VideoCapture(vid_path)
while vid_cap.isOpened():
ret, frame = vid_cap.read()
if ret:
print("making predictions ....")
frame = utils.resize(frame)
image_segmentation, objects_data = img_seg.predict(frame)
depthmap, depth_colormap = depth_estimator.make_prediction(frame)
dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)
return None
def update_segmentation_options(options):
img_seg.is_show_bounding_boxes = True if 'Show Boundary Box' in options else False
img_seg.is_show_segmentation = True if 'Show Segmentation Region' in options else False
img_seg.is_show_segmentation_boundary = True if 'Show Segmentation Boundary' in options else False
def update_confidence_threshold(thres_val):
img_seg.confidence_threshold = thres_val/100
def model_selector(model_type):
if "Small - Better performance and less accuracy" == model_type:
midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
elif "Medium - Balanced performance and accuracy" == model_type:
midas_model, yolo_model = "dpt_hybrid_384", "yolov8m-seg"
elif "Large - Slow performance and high accuracy" == model_type:
midas_model, yolo_model = "dpt_large_384", "yolov8l-seg"
else:
midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
img_seg = ImageSegmenter(model_type=yolo_model)
depth_estimator = MonocularDepthEstimator(model_type=midas_model)
def cancel():
CANCEL_PROCESSING = True
if __name__ == "__main__":
# testing
# img_1 = cv2.imread("assets/images/bus.jpg")
# img_1 = utils.resize(img_1)
# image_segmentation, objects_data, depthmap, depth_colormap = test_process_img(img_1)
# final_image = utils.draw_depth_info(image_segmentation, depthmap, objects_data)
# objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
# # print(objs_pcd[0][0])
# display_pcd(objs_pcd, use_matplotlib=True)
# cv2.imshow("Segmentation", image_segmentation)
# cv2.imshow("Depth", depthmap*objects_data[2][3])
# cv2.imshow("Final", final_image)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# gradio gui app
with gr.Blocks() as my_app:
# title
gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
gr.Markdown("<h3><center>Created by Vaishanth</center></h3>")
gr.Markdown("<h3><center>This model estimates the depth of segmented objects.</center></h3>")
# tabs
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image()
model_type_img = gr.Dropdown(
["Small - Better performance and less accuracy",
"Medium - Balanced performance and accuracy",
"Large - Slow performance and high accuracy"],
label="Model Type", value="Small - Better performance and less accuracy",
info="Select the inference model before running predictions!")
options_checkbox_img = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
conf_thres_img = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
submit_btn_img = gr.Button(value="Predict")
with gr.Column(scale=2):
with gr.Row():
segmentation_img_output = gr.Image(height=300, label="Segmentation")
depth_img_output = gr.Image(height=300, label="Depth Estimation")
with gr.Row():
dist_img_output = gr.Image(height=300, label="Distance")
pcd_img_output = gr.Plot(label="Point Cloud")
gr.Markdown("## Sample Images")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "assets/images/baggage_claim.jpg"),
os.path.join(os.path.dirname(__file__), "assets/images/kitchen_2.png"),
os.path.join(os.path.dirname(__file__), "assets/images/soccer.jpg"),
os.path.join(os.path.dirname(__file__), "assets/images/room_2.png"),
os.path.join(os.path.dirname(__file__), "assets/images/living_room.jpg")],
inputs=img_input,
outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output],
fn=process_image,
cache_examples=True,
)
with gr.Tab("Video"):
with gr.Row():
with gr.Column(scale=1):
vid_input = gr.Video()
model_type_vid = gr.Dropdown(
["Small - Better performance and less accuracy",
"Medium - Balanced performance and accuracy",
"Large - Slow performance and high accuracy"],
label="Model Type", value="Small - Better performance and less accuracy",
info="Select the inference model before running predictions!")
options_checkbox_vid = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
conf_thres_vid = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
with gr.Row():
cancel_btn = gr.Button(value="Cancel")
submit_btn_vid = gr.Button(value="Predict")
with gr.Column(scale=2):
with gr.Row():
segmentation_vid_output = gr.Image(height=300, label="Segmentation")
depth_vid_output = gr.Image(height=300, label="Depth Estimation")
with gr.Row():
dist_vid_output = gr.Image(height=300, label="Distance")
gr.Markdown("## Sample Videos")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/driving.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/overpass.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/walking.mp4")],
inputs=vid_input,
# outputs=vid_output,
# fn=vid_segmenation,
)
# image tab logic
submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
options_checkbox_img.change(update_segmentation_options, options_checkbox_img, [])
conf_thres_img.change(update_confidence_threshold, conf_thres_img, [])
model_type_img.change(model_selector, model_type_img, [])
# video tab logic
submit_btn_vid.click(process_video, inputs=vid_input, outputs=[segmentation_vid_output, depth_vid_output, dist_vid_output])
model_type_vid.change(model_selector, model_type_vid, [])
cancel_btn.click(cancel, inputs=[], outputs=[])
options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, [])
my_app.queue(concurrency_count=5, max_size=20).launch()