File size: 9,212 Bytes
8166792 661e202 00ab2e7 8166792 661e202 8166792 661e202 8166792 661e202 00ab2e7 661e202 8166792 00ab2e7 8166792 661e202 00ab2e7 8166792 661e202 8166792 661e202 8166792 661e202 00ab2e7 661e202 00ab2e7 661e202 8166792 00ab2e7 8166792 661e202 8166792 661e202 00ab2e7 8166792 00ab2e7 8166792 00ab2e7 8166792 661e202 00ab2e7 661e202 8166792 00ab2e7 661e202 8166792 00ab2e7 8166792 00ab2e7 8166792 00ab2e7 8166792 661e202 8166792 661e202 00ab2e7 8166792 00ab2e7 8166792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
from ultralytics import YOLO
import cv2
import gradio as gr
import numpy as np
import os
import torch
import utils
import plotly.graph_objects as go
from image_segmenter import ImageSegmenter
from monocular_depth_estimator import MonocularDepthEstimator
from point_cloud_generator import display_pcd
# params
CANCEL_PROCESSING = False
img_seg = ImageSegmenter(model_type="yolov8s-seg")
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
def process_image(image):
image = utils.resize(image)
image_segmentation, objects_data = img_seg.predict(image)
depthmap, depth_colormap = depth_estimator.make_prediction(image)
dist_image = utils.draw_depth_info(image, depthmap, objects_data)
objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
plot_fig = display_pcd(objs_pcd)
return image_segmentation, depth_colormap, dist_image, plot_fig
def test_process_img(image):
image = utils.resize(image)
image_segmentation, objects_data = img_seg.predict(image)
depthmap, depth_colormap = depth_estimator.make_prediction(image)
return image_segmentation, objects_data, depthmap, depth_colormap
def process_video(vid_path=None):
vid_cap = cv2.VideoCapture(vid_path)
while vid_cap.isOpened():
ret, frame = vid_cap.read()
if ret:
print("making predictions ....")
frame = utils.resize(frame)
image_segmentation, objects_data = img_seg.predict(frame)
depthmap, depth_colormap = depth_estimator.make_prediction(frame)
dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)
return None
def update_segmentation_options(options):
img_seg.is_show_bounding_boxes = True if 'Show Boundary Box' in options else False
img_seg.is_show_segmentation = True if 'Show Segmentation Region' in options else False
img_seg.is_show_segmentation_boundary = True if 'Show Segmentation Boundary' in options else False
def update_confidence_threshold(thres_val):
img_seg.confidence_threshold = thres_val/100
def model_selector(model_type):
if "Small - Better performance and less accuracy" == model_type:
midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
elif "Medium - Balanced performance and accuracy" == model_type:
midas_model, yolo_model = "dpt_hybrid_384", "yolov8m-seg"
elif "Large - Slow performance and high accuracy" == model_type:
midas_model, yolo_model = "dpt_large_384", "yolov8l-seg"
else:
midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
img_seg = ImageSegmenter(model_type=yolo_model)
depth_estimator = MonocularDepthEstimator(model_type=midas_model)
def cancel():
CANCEL_PROCESSING = True
if __name__ == "__main__":
# testing
# img_1 = cv2.imread("assets/images/bus.jpg")
# img_1 = utils.resize(img_1)
# image_segmentation, objects_data, depthmap, depth_colormap = test_process_img(img_1)
# final_image = utils.draw_depth_info(image_segmentation, depthmap, objects_data)
# objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
# # print(objs_pcd[0][0])
# display_pcd(objs_pcd, use_matplotlib=True)
# cv2.imshow("Segmentation", image_segmentation)
# cv2.imshow("Depth", depthmap*objects_data[2][3])
# cv2.imshow("Final", final_image)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# gradio gui app
with gr.Blocks() as my_app:
# title
gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
gr.Markdown("<h3><center>Created by Vaishanth</center></h3>")
gr.Markdown("<h3><center>This model estimates the depth of segmented objects.</center></h3>")
# tabs
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image()
model_type_img = gr.Dropdown(
["Small - Better performance and less accuracy",
"Medium - Balanced performance and accuracy",
"Large - Slow performance and high accuracy"],
label="Model Type", value="Small - Better performance and less accuracy",
info="Select the inference model before running predictions!")
options_checkbox_img = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
conf_thres_img = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
submit_btn_img = gr.Button(value="Predict")
with gr.Column(scale=2):
with gr.Row():
segmentation_img_output = gr.Image(height=300, label="Segmentation")
depth_img_output = gr.Image(height=300, label="Depth Estimation")
with gr.Row():
dist_img_output = gr.Image(height=300, label="Distance")
pcd_img_output = gr.Plot(label="Point Cloud")
gr.Markdown("## Sample Images")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "assets/images/baggage_claim.jpg"),
os.path.join(os.path.dirname(__file__), "assets/images/kitchen_2.png"),
os.path.join(os.path.dirname(__file__), "assets/images/soccer.jpg"),
os.path.join(os.path.dirname(__file__), "assets/images/room_2.png"),
os.path.join(os.path.dirname(__file__), "assets/images/living_room.jpg")],
inputs=img_input,
outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output],
fn=process_image,
cache_examples=True,
)
with gr.Tab("Video"):
with gr.Row():
with gr.Column(scale=1):
vid_input = gr.Video()
model_type_vid = gr.Dropdown(
["Small - Better performance and less accuracy",
"Medium - Balanced performance and accuracy",
"Large - Slow performance and high accuracy"],
label="Model Type", value="Small - Better performance and less accuracy",
info="Select the inference model before running predictions!")
options_checkbox_vid = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
conf_thres_vid = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
with gr.Row():
cancel_btn = gr.Button(value="Cancel")
submit_btn_vid = gr.Button(value="Predict")
with gr.Column(scale=2):
with gr.Row():
segmentation_vid_output = gr.Image(height=300, label="Segmentation")
depth_vid_output = gr.Image(height=300, label="Depth Estimation")
with gr.Row():
dist_vid_output = gr.Image(height=300, label="Distance")
gr.Markdown("## Sample Videos")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/driving.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/overpass.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/walking.mp4")],
inputs=vid_input,
# outputs=vid_output,
# fn=vid_segmenation,
)
# image tab logic
submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
options_checkbox_img.change(update_segmentation_options, options_checkbox_img, [])
conf_thres_img.change(update_confidence_threshold, conf_thres_img, [])
model_type_img.change(model_selector, model_type_img, [])
# video tab logic
submit_btn_vid.click(process_video, inputs=vid_input, outputs=[segmentation_vid_output, depth_vid_output, dist_vid_output])
model_type_vid.change(model_selector, model_type_vid, [])
cancel_btn.click(cancel, inputs=[], outputs=[])
options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, [])
my_app.queue(concurrency_count=5, max_size=20).launch() |