vaishanthr commited on
Commit
dfa7438
·
1 Parent(s): 31607dc

added sample images

Browse files
Files changed (1) hide show
  1. app.py +15 -3
app.py CHANGED
@@ -18,7 +18,7 @@ inceptionV3_model = InceptionV3Classifier()
18
  mobilenet_model = MobileNetClassifier()
19
 
20
  def make_prediction(image, model_type):
21
- if "CNN (2 layer) - Custom" == model_type:
22
  top_classes, top_probs = custom_model.classify_image(image, top_k=3)
23
  return {CLASS_NAMES[cls_id]:str(prob) for cls_id, prob in zip(top_classes, top_probs)}
24
  elif "ResNet50" == model_type:
@@ -61,7 +61,7 @@ def train_model(epochs, batch_size, validation_split):
61
 
62
 
63
  def update_train_param_display(model_type):
64
- if "CNN (2 layer) - Custom" == model_type:
65
  return [gr.update(visible=True), gr.update(visible=False)]
66
  return [gr.update(visible=False), gr.update(visible=True)]
67
 
@@ -75,7 +75,7 @@ if __name__ == "__main__":
75
  with gr.Column(scale=1):
76
  img_input = gr.Image()
77
  model_type = gr.Dropdown(
78
- ["CNN (2 layer) - Custom",
79
  "ResNet50",
80
  "VGG16",
81
  "Inception v3",
@@ -101,6 +101,18 @@ if __name__ == "__main__":
101
 
102
  with gr.Column(scale=1):
103
  output_label = gr.Label()
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  # app logic
106
  predict_btn_1.click(make_prediction, inputs=[img_input, model_type], outputs=[output_label])
 
18
  mobilenet_model = MobileNetClassifier()
19
 
20
  def make_prediction(image, model_type):
21
+ if "CNN (Custom)" == model_type:
22
  top_classes, top_probs = custom_model.classify_image(image, top_k=3)
23
  return {CLASS_NAMES[cls_id]:str(prob) for cls_id, prob in zip(top_classes, top_probs)}
24
  elif "ResNet50" == model_type:
 
61
 
62
 
63
  def update_train_param_display(model_type):
64
+ if "CNN (Custom)" == model_type:
65
  return [gr.update(visible=True), gr.update(visible=False)]
66
  return [gr.update(visible=False), gr.update(visible=True)]
67
 
 
75
  with gr.Column(scale=1):
76
  img_input = gr.Image()
77
  model_type = gr.Dropdown(
78
+ ["CNN (Custom)",
79
  "ResNet50",
80
  "VGG16",
81
  "Inception v3",
 
101
 
102
  with gr.Column(scale=1):
103
  output_label = gr.Label()
104
+
105
+ gr.Markdown("## Sample Images")
106
+ gr.Examples(
107
+ examples=[os.path.join(os.path.dirname(__file__), "assets/dog_2.jpg"),
108
+ os.path.join(os.path.dirname(__file__), "assets/truck.jpg"),
109
+ os.path.join(os.path.dirname(__file__), "assets/car.jpg")
110
+ ],
111
+ inputs=img_input,
112
+ outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output],
113
+ fn=process_image,
114
+ cache_examples=True,
115
+ )
116
 
117
  # app logic
118
  predict_btn_1.click(make_prediction, inputs=[img_input, model_type], outputs=[output_label])