vaishanthr
commited on
Commit
·
31607dc
1
Parent(s):
90a0c4e
initial commit
Browse files- .gitignore +0 -0
- app.py +111 -0
- assets/car.jpg +0 -0
- assets/dog_2.jpg +0 -0
- assets/truck.jpg +0 -0
- custom_model.py +116 -0
- demo.ipynb +341 -0
- image_classifier_model.h5 +3 -0
- inception_v3_model.py +26 -0
- mobilevet_v2.py +26 -0
- requirements.txt +20 -0
- resnet_model.py +25 -0
- vgg16_model.py +26 -0
.gitignore
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow import keras
|
4 |
+
from custom_model import ImageClassifier
|
5 |
+
from resnet_model import ResNetClassifier
|
6 |
+
from vgg16_model import VGG16Classifier
|
7 |
+
from inception_v3_model import InceptionV3Classifier
|
8 |
+
from mobilevet_v2 import MobileNetClassifier
|
9 |
+
|
10 |
+
CLASS_NAMES =['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', 'Dog', 'Frog', 'Horse', 'Ship', 'Truck']
|
11 |
+
|
12 |
+
# models
|
13 |
+
custom_model = ImageClassifier()
|
14 |
+
custom_model.load_model("image_classifier_model.h5")
|
15 |
+
resnet_model = ResNetClassifier()
|
16 |
+
vgg16_model = VGG16Classifier()
|
17 |
+
inceptionV3_model = InceptionV3Classifier()
|
18 |
+
mobilenet_model = MobileNetClassifier()
|
19 |
+
|
20 |
+
def make_prediction(image, model_type):
|
21 |
+
if "CNN (2 layer) - Custom" == model_type:
|
22 |
+
top_classes, top_probs = custom_model.classify_image(image, top_k=3)
|
23 |
+
return {CLASS_NAMES[cls_id]:str(prob) for cls_id, prob in zip(top_classes, top_probs)}
|
24 |
+
elif "ResNet50" == model_type:
|
25 |
+
predictions = resnet_model.classify_image(image)
|
26 |
+
return {class_name:str(prob) for _, class_name, prob in predictions}
|
27 |
+
elif "VGG16" == model_type:
|
28 |
+
predictions = vgg16_model.classify_image(image)
|
29 |
+
return {class_name:str(prob) for _, class_name, prob in predictions}
|
30 |
+
elif "Inception v3" == model_type:
|
31 |
+
predictions = inceptionV3_model.classify_image(image)
|
32 |
+
return {class_name:str(prob) for _, class_name, prob in predictions}
|
33 |
+
elif "Mobile Net v2" == model_type:
|
34 |
+
predictions = mobilenet_model.classify_image(image)
|
35 |
+
return {class_name:str(prob) for _, class_name, prob in predictions}
|
36 |
+
else:
|
37 |
+
return {"Select a model to classify image"}
|
38 |
+
|
39 |
+
def train_model(epochs, batch_size, validation_split):
|
40 |
+
|
41 |
+
print("Training model")
|
42 |
+
|
43 |
+
# Create an instance of the ImageClassifier
|
44 |
+
classifier = ImageClassifier()
|
45 |
+
|
46 |
+
# Load the dataset
|
47 |
+
(x_train, y_train), (x_test, y_test) = classifier.load_dataset()
|
48 |
+
|
49 |
+
# Build and train the model
|
50 |
+
classifier.build_model(x_train)
|
51 |
+
classifier.train_model(x_train, y_train, batch_size=int(batch_size), epochs=int(epochs), validation_split=float(validation_split))
|
52 |
+
|
53 |
+
# Evaluate the model
|
54 |
+
classifier.evaluate_model(x_test, y_test)
|
55 |
+
|
56 |
+
# Save the trained model
|
57 |
+
print("Saving model ...")
|
58 |
+
classifier.save_model("image_classifier_model.h5")
|
59 |
+
|
60 |
+
custom_model = classifier
|
61 |
+
|
62 |
+
|
63 |
+
def update_train_param_display(model_type):
|
64 |
+
if "CNN (2 layer) - Custom" == model_type:
|
65 |
+
return [gr.update(visible=True), gr.update(visible=False)]
|
66 |
+
return [gr.update(visible=False), gr.update(visible=True)]
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
# gradio gui app
|
70 |
+
with gr.Blocks() as my_app:
|
71 |
+
gr.Markdown("<h1><center>Image Classification using TensorFlow</center></h1>")
|
72 |
+
gr.Markdown("<h3><center>This model classifies image using different models.</center></h3>")
|
73 |
+
|
74 |
+
with gr.Row():
|
75 |
+
with gr.Column(scale=1):
|
76 |
+
img_input = gr.Image()
|
77 |
+
model_type = gr.Dropdown(
|
78 |
+
["CNN (2 layer) - Custom",
|
79 |
+
"ResNet50",
|
80 |
+
"VGG16",
|
81 |
+
"Inception v3",
|
82 |
+
"Mobile Net v2"],
|
83 |
+
label="Model Type", value="CNN (2 layer) - Custom",
|
84 |
+
info="Select the inference model before running predictions!")
|
85 |
+
|
86 |
+
with gr.Column() as train_col:
|
87 |
+
gr.Markdown("Train Parameters")
|
88 |
+
with gr.Row():
|
89 |
+
epochs_inp = gr.Textbox(label="Epochs", value="10")
|
90 |
+
validation_split = gr.Textbox(label="Validation Split", value="0.1")
|
91 |
+
|
92 |
+
with gr.Row():
|
93 |
+
batch_size = gr.Textbox(label="Batch Size", value="64")
|
94 |
+
|
95 |
+
with gr.Row():
|
96 |
+
train_btn = gr.Button(value="Train")
|
97 |
+
predict_btn_1 = gr.Button(value="Predict")
|
98 |
+
|
99 |
+
with gr.Column(visible=False) as no_train_col:
|
100 |
+
predict_btn_2 = gr.Button(value="Predict")
|
101 |
+
|
102 |
+
with gr.Column(scale=1):
|
103 |
+
output_label = gr.Label()
|
104 |
+
|
105 |
+
# app logic
|
106 |
+
predict_btn_1.click(make_prediction, inputs=[img_input, model_type], outputs=[output_label])
|
107 |
+
predict_btn_2.click(make_prediction, inputs=[img_input, model_type], outputs=[output_label])
|
108 |
+
model_type.change(update_train_param_display, inputs=model_type, outputs=[train_col, no_train_col])
|
109 |
+
train_btn.click(train_model, inputs=[epochs_inp, batch_size, validation_split], outputs=[])
|
110 |
+
|
111 |
+
my_app.queue(concurrency_count=5, max_size=20).launch(debug=True)
|
assets/car.jpg
ADDED
assets/dog_2.jpg
ADDED
assets/truck.jpg
ADDED
custom_model.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow import keras
|
3 |
+
from tensorflow.keras import layers
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
|
7 |
+
|
8 |
+
class ImageClassifier:
|
9 |
+
def __init__(self):
|
10 |
+
self.model = None
|
11 |
+
|
12 |
+
def preprocess_image(self, image):
|
13 |
+
# Resize the image to (32, 32)
|
14 |
+
resized_image = cv2.resize(image, (32, 32))
|
15 |
+
|
16 |
+
# # Convert the image to grayscale
|
17 |
+
# gray_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY)
|
18 |
+
|
19 |
+
# # # Normalize the pixel values between 0 and 1
|
20 |
+
# normalized_image = gray_image.astype("float32") / 255.0
|
21 |
+
|
22 |
+
# # # Transpose the dimensions to match the model's input shape
|
23 |
+
# transposed_image = np.transpose(normalized_image, (1, 2, 0))
|
24 |
+
|
25 |
+
# # # Expand dimensions to match model input shape (add batch dimension)
|
26 |
+
# img_array = np.expand_dims(transposed_image, axis=0)
|
27 |
+
return resized_image
|
28 |
+
|
29 |
+
def load_dataset(self):
|
30 |
+
# Set up the dataset
|
31 |
+
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
|
32 |
+
|
33 |
+
# Normalize pixel values between 0 and 1
|
34 |
+
x_train = x_train.astype("float32") / 255.0
|
35 |
+
x_test = x_test.astype("float32") / 255.0
|
36 |
+
|
37 |
+
return (x_train, y_train), (x_test, y_test)
|
38 |
+
|
39 |
+
# def build_model(self, x_train):
|
40 |
+
# # Define the model architecture
|
41 |
+
# model = keras.Sequential([
|
42 |
+
# # keras.Input(shape=x_train.shape[1]),
|
43 |
+
# layers.Conv2D(32, kernel_size=(3, 3), activation="relu", padding='same'),
|
44 |
+
# layers.MaxPooling2D(pool_size=(2, 2)),
|
45 |
+
# layers.Conv2D(64, kernel_size=(3, 3), activation="relu", padding='same'),
|
46 |
+
# layers.MaxPooling2D(pool_size=(2, 2)),
|
47 |
+
# layers.Flatten(),
|
48 |
+
# layers.Dropout(0.5),
|
49 |
+
# layers.Dense(10, activation="softmax")
|
50 |
+
# ])
|
51 |
+
|
52 |
+
# # Compile the model
|
53 |
+
# model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
|
54 |
+
|
55 |
+
# self.model = model
|
56 |
+
|
57 |
+
def build_model(self, x_train):
|
58 |
+
# Define the model architecture
|
59 |
+
model = keras.Sequential([
|
60 |
+
layers.Conv2D(32, kernel_size=(3, 3), activation="relu", padding='same'),
|
61 |
+
layers.BatchNormalization(),
|
62 |
+
layers.MaxPooling2D(pool_size=(2, 2)),
|
63 |
+
layers.Dropout(0.25),
|
64 |
+
|
65 |
+
layers.Conv2D(64, kernel_size=(3, 3), activation="relu", padding='same'),
|
66 |
+
layers.BatchNormalization(),
|
67 |
+
layers.MaxPooling2D(pool_size=(2, 2)),
|
68 |
+
layers.Dropout(0.25),
|
69 |
+
|
70 |
+
layers.Conv2D(128, kernel_size=(3, 3), activation="relu", padding='same'),
|
71 |
+
layers.BatchNormalization(),
|
72 |
+
layers.MaxPooling2D(pool_size=(2, 2)),
|
73 |
+
layers.Dropout(0.25),
|
74 |
+
|
75 |
+
layers.Flatten(),
|
76 |
+
layers.Dense(256, activation="relu"),
|
77 |
+
layers.BatchNormalization(),
|
78 |
+
layers.Dropout(0.5),
|
79 |
+
|
80 |
+
layers.Dense(10, activation="softmax")
|
81 |
+
])
|
82 |
+
|
83 |
+
# Compile the model
|
84 |
+
optimizer = keras.optimizers.RMSprop(learning_rate=0.001)
|
85 |
+
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
|
86 |
+
|
87 |
+
self.model = model
|
88 |
+
|
89 |
+
def train_model(self, x_train, y_train, batch_size, epochs, validation_split):
|
90 |
+
# Train the model
|
91 |
+
self.model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_split=validation_split)
|
92 |
+
|
93 |
+
def evaluate_model(self, x_test, y_test):
|
94 |
+
# Evaluate the model on the test set
|
95 |
+
score = self.model.evaluate(x_test, y_test, verbose=0)
|
96 |
+
print("Test loss:", score[0])
|
97 |
+
print("Test accuracy:", score[1])
|
98 |
+
|
99 |
+
def save_model(self, filepath):
|
100 |
+
# Save the trained model
|
101 |
+
self.model.save(filepath)
|
102 |
+
|
103 |
+
def load_model(self, filepath):
|
104 |
+
# Load the trained model
|
105 |
+
self.model = keras.models.load_model(filepath)
|
106 |
+
|
107 |
+
def classify_image(self, image, top_k=3):
|
108 |
+
# Preprocess the image
|
109 |
+
preprocessed_image = self.preprocess_image(image)
|
110 |
+
|
111 |
+
# Perform inference
|
112 |
+
predicted_probs = self.model.predict(np.array([preprocessed_image]))
|
113 |
+
top_classes = np.argsort(predicted_probs[0])[-top_k:][::-1]
|
114 |
+
top_probs = predicted_probs[0][top_classes]
|
115 |
+
|
116 |
+
return top_classes, top_probs
|
demo.ipynb
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 9,
|
22 |
+
"metadata": {
|
23 |
+
"colab": {
|
24 |
+
"base_uri": "https://localhost:8080/"
|
25 |
+
},
|
26 |
+
"id": "OdOgOEqcDzhY",
|
27 |
+
"outputId": "a1787cb0-c94a-4145-ef35-bb222f63a373"
|
28 |
+
},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"output_type": "stream",
|
32 |
+
"name": "stdout",
|
33 |
+
"text": [
|
34 |
+
"Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n",
|
35 |
+
"/content/drive/My Drive/My Projects/Image_Classifier_TensorFlow\n"
|
36 |
+
]
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"# This mounts your Google Drive to the Colab VM.\n",
|
41 |
+
"from google.colab import drive\n",
|
42 |
+
"drive.mount('/content/drive')\n",
|
43 |
+
"\n",
|
44 |
+
"%cd /content/drive/My\\ Drive/My\\ Projects/Image_Classifier_TensorFlow"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"source": [
|
50 |
+
"pwd"
|
51 |
+
],
|
52 |
+
"metadata": {
|
53 |
+
"colab": {
|
54 |
+
"base_uri": "https://localhost:8080/",
|
55 |
+
"height": 36
|
56 |
+
},
|
57 |
+
"id": "EuUA1qNaEdGB",
|
58 |
+
"outputId": "b9b3ca06-157a-4686-92ab-72c080dddcfb"
|
59 |
+
},
|
60 |
+
"execution_count": 10,
|
61 |
+
"outputs": [
|
62 |
+
{
|
63 |
+
"output_type": "execute_result",
|
64 |
+
"data": {
|
65 |
+
"text/plain": [
|
66 |
+
"'/content/drive/My Drive/My Projects/Image_Classifier_TensorFlow'"
|
67 |
+
],
|
68 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
69 |
+
"type": "string"
|
70 |
+
}
|
71 |
+
},
|
72 |
+
"metadata": {},
|
73 |
+
"execution_count": 10
|
74 |
+
}
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "markdown",
|
79 |
+
"source": [
|
80 |
+
"# Gradio App"
|
81 |
+
],
|
82 |
+
"metadata": {
|
83 |
+
"id": "6XXQqgGmErXJ"
|
84 |
+
}
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"source": [
|
89 |
+
"# installations\n",
|
90 |
+
"!pip install gradio"
|
91 |
+
],
|
92 |
+
"metadata": {
|
93 |
+
"id": "wSuhvzbEE8Ql"
|
94 |
+
},
|
95 |
+
"execution_count": null,
|
96 |
+
"outputs": []
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "markdown",
|
100 |
+
"source": [
|
101 |
+
"## Training"
|
102 |
+
],
|
103 |
+
"metadata": {
|
104 |
+
"id": "71zplmVlFU9J"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"source": [
|
110 |
+
"print(\"Training model...\")\n",
|
111 |
+
"# Create an instance of the ImageClassifier\n",
|
112 |
+
"classifier = ImageClassifier()\n",
|
113 |
+
"\n",
|
114 |
+
"# Load the dataset\n",
|
115 |
+
"(x_train, y_train), (x_test, y_test) = classifier.load_dataset()\n",
|
116 |
+
"\n",
|
117 |
+
"# Build and train the model\n",
|
118 |
+
"classifier.build_model(x_train)\n",
|
119 |
+
"classifier.train_model(x_train, y_train, batch_size=64, epochs=1, validation_split=0.1)\n",
|
120 |
+
"\n",
|
121 |
+
"# Evaluate the model\n",
|
122 |
+
"classifier.evaluate_model(x_test, y_test)\n",
|
123 |
+
"\n",
|
124 |
+
"# Save the trained model\n",
|
125 |
+
"print(\"Saving model ...\")\n",
|
126 |
+
"classifier.save_model(\"image_classifier_model.h5\")"
|
127 |
+
],
|
128 |
+
"metadata": {
|
129 |
+
"colab": {
|
130 |
+
"base_uri": "https://localhost:8080/"
|
131 |
+
},
|
132 |
+
"id": "Q9vKOsnKFRu4",
|
133 |
+
"outputId": "93268865-5288-44a3-bc09-6d30620655f8"
|
134 |
+
},
|
135 |
+
"execution_count": 13,
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"output_type": "stream",
|
139 |
+
"name": "stdout",
|
140 |
+
"text": [
|
141 |
+
"Training model...\n",
|
142 |
+
"704/704 [==============================] - 187s 263ms/step - loss: 1.5925 - accuracy: 0.4633 - val_loss: 1.3171 - val_accuracy: 0.5372\n",
|
143 |
+
"Test loss: 1.3429059982299805\n",
|
144 |
+
"Test accuracy: 0.5228999853134155\n",
|
145 |
+
"Saving model ...\n"
|
146 |
+
]
|
147 |
+
}
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"source": [
|
153 |
+
"import gradio as gr\n",
|
154 |
+
"import tensorflow as tf\n",
|
155 |
+
"from tensorflow import keras\n",
|
156 |
+
"from custom_model import ImageClassifier\n",
|
157 |
+
"from resnet_model import ResNetClassifier\n",
|
158 |
+
"from vgg16_model import VGG16Classifier\n",
|
159 |
+
"from inception_v3_model import InceptionV3Classifier\n",
|
160 |
+
"from mobilevet_v2 import MobileNetClassifier\n",
|
161 |
+
"\n",
|
162 |
+
"CLASS_NAMES =['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', 'Dog', 'Frog', 'Horse', 'Ship', 'Truck']\n",
|
163 |
+
"\n",
|
164 |
+
"# models\n",
|
165 |
+
"custom_model = ImageClassifier()\n",
|
166 |
+
"custom_model.load_model(\"image_classifier_model.h5\")\n",
|
167 |
+
"resnet_model = ResNetClassifier()\n",
|
168 |
+
"vgg16_model = VGG16Classifier()\n",
|
169 |
+
"inceptionV3_model = InceptionV3Classifier()\n",
|
170 |
+
"mobilenet_model = MobileNetClassifier()\n",
|
171 |
+
"\n",
|
172 |
+
"def make_prediction(image, model_type):\n",
|
173 |
+
" if \"CNN (2 layer) - Custom\" == model_type:\n",
|
174 |
+
" top_classes, top_probs = custom_model.classify_image(image, top_k=3)\n",
|
175 |
+
" return {CLASS_NAMES[cls_id]:str(prob) for cls_id, prob in zip(top_classes, top_probs)}\n",
|
176 |
+
" elif \"ResNet50\" == model_type:\n",
|
177 |
+
" predictions = resnet_model.classify_image(image)\n",
|
178 |
+
" return {class_name:str(prob) for _, class_name, prob in predictions}\n",
|
179 |
+
" elif \"VGG16\" == model_type:\n",
|
180 |
+
" predictions = vgg16_model.classify_image(image)\n",
|
181 |
+
" return {class_name:str(prob) for _, class_name, prob in predictions}\n",
|
182 |
+
" elif \"Inception v3\" == model_type:\n",
|
183 |
+
" predictions = inceptionV3_model.classify_image(image)\n",
|
184 |
+
" return {class_name:str(prob) for _, class_name, prob in predictions}\n",
|
185 |
+
" elif \"Mobile Net v2\" == model_type:\n",
|
186 |
+
" predictions = mobilenet_model.classify_image(image)\n",
|
187 |
+
" return {class_name:str(prob) for _, class_name, prob in predictions}\n",
|
188 |
+
" else:\n",
|
189 |
+
" return {\"Select a model to classify image\"}\n",
|
190 |
+
"\n",
|
191 |
+
"def train_model(epochs, batch_size, validation_split):\n",
|
192 |
+
"\n",
|
193 |
+
" print(\"Training model\")\n",
|
194 |
+
"\n",
|
195 |
+
" # Create an instance of the ImageClassifier\n",
|
196 |
+
" classifier = ImageClassifier()\n",
|
197 |
+
"\n",
|
198 |
+
" # Load the dataset\n",
|
199 |
+
" (x_train, y_train), (x_test, y_test) = classifier.load_dataset()\n",
|
200 |
+
"\n",
|
201 |
+
" # Build and train the model\n",
|
202 |
+
" classifier.build_model(x_train)\n",
|
203 |
+
" classifier.train_model(x_train, y_train, batch_size=int(batch_size), epochs=int(epochs), validation_split=float(validation_split))\n",
|
204 |
+
"\n",
|
205 |
+
" # Evaluate the model\n",
|
206 |
+
" classifier.evaluate_model(x_test, y_test)\n",
|
207 |
+
"\n",
|
208 |
+
" # Save the trained model\n",
|
209 |
+
" print(\"Saving model ...\")\n",
|
210 |
+
" classifier.save_model(\"image_classifier_model.h5\")\n",
|
211 |
+
"\n",
|
212 |
+
" custom_model = classifier\n",
|
213 |
+
"\n",
|
214 |
+
"\n",
|
215 |
+
"def update_train_param_display(model_type):\n",
|
216 |
+
" if \"CNN (2 layer) - Custom\" == model_type:\n",
|
217 |
+
" return [gr.update(visible=True), gr.update(visible=False)]\n",
|
218 |
+
" return [gr.update(visible=False), gr.update(visible=True)]\n",
|
219 |
+
"\n",
|
220 |
+
"if __name__ == \"__main__\":\n",
|
221 |
+
" # gradio gui app\n",
|
222 |
+
" with gr.Blocks() as my_app:\n",
|
223 |
+
" gr.Markdown(\"<h1><center>Image Classification using TensorFlow</center></h1>\")\n",
|
224 |
+
" gr.Markdown(\"<h3><center>This model classifies image using different models.</center></h3>\")\n",
|
225 |
+
"\n",
|
226 |
+
" with gr.Row():\n",
|
227 |
+
" with gr.Column(scale=1):\n",
|
228 |
+
" img_input = gr.Image()\n",
|
229 |
+
" model_type = gr.Dropdown(\n",
|
230 |
+
" [\"CNN (2 layer) - Custom\",\n",
|
231 |
+
" \"ResNet50\",\n",
|
232 |
+
" \"VGG16\",\n",
|
233 |
+
" \"Inception v3\",\n",
|
234 |
+
" \"Mobile Net v2\"],\n",
|
235 |
+
" label=\"Model Type\", value=\"CNN (2 layer) - Custom\",\n",
|
236 |
+
" info=\"Select the inference model before running predictions!\")\n",
|
237 |
+
"\n",
|
238 |
+
" with gr.Column() as train_col:\n",
|
239 |
+
" gr.Markdown(\"Train Parameters\")\n",
|
240 |
+
" with gr.Row():\n",
|
241 |
+
" epochs_inp = gr.Textbox(label=\"Epochs\", value=\"10\")\n",
|
242 |
+
" validation_split = gr.Textbox(label=\"Validation Split\", value=\"0.1\")\n",
|
243 |
+
"\n",
|
244 |
+
" with gr.Row():\n",
|
245 |
+
" batch_size = gr.Textbox(label=\"Batch Size\", value=\"64\")\n",
|
246 |
+
"\n",
|
247 |
+
" with gr.Row():\n",
|
248 |
+
" train_btn = gr.Button(value=\"Train\")\n",
|
249 |
+
" predict_btn_1 = gr.Button(value=\"Predict\")\n",
|
250 |
+
"\n",
|
251 |
+
" with gr.Column(visible=False) as no_train_col:\n",
|
252 |
+
" predict_btn_2 = gr.Button(value=\"Predict\")\n",
|
253 |
+
"\n",
|
254 |
+
" with gr.Column(scale=1):\n",
|
255 |
+
" output_label = gr.Label()\n",
|
256 |
+
"\n",
|
257 |
+
" # app logic\n",
|
258 |
+
" predict_btn_1.click(make_prediction, inputs=[img_input, model_type], outputs=[output_label])\n",
|
259 |
+
" predict_btn_2.click(make_prediction, inputs=[img_input, model_type], outputs=[output_label])\n",
|
260 |
+
" model_type.change(update_train_param_display, inputs=model_type, outputs=[train_col, no_train_col])\n",
|
261 |
+
" train_btn.click(train_model, inputs=[epochs_inp, batch_size, validation_split], outputs=[])\n",
|
262 |
+
"\n",
|
263 |
+
"my_app.queue(concurrency_count=5, max_size=20).launch(debug=True)"
|
264 |
+
],
|
265 |
+
"metadata": {
|
266 |
+
"colab": {
|
267 |
+
"base_uri": "https://localhost:8080/",
|
268 |
+
"height": 936
|
269 |
+
},
|
270 |
+
"id": "1N6d3Y0oEozx",
|
271 |
+
"outputId": "07cc9273-30a8-4186-f0bf-e14a5aa45216"
|
272 |
+
},
|
273 |
+
"execution_count": 14,
|
274 |
+
"outputs": [
|
275 |
+
{
|
276 |
+
"output_type": "stream",
|
277 |
+
"name": "stdout",
|
278 |
+
"text": [
|
279 |
+
"Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels.h5\n",
|
280 |
+
"102967424/102967424 [==============================] - 1s 0us/step\n",
|
281 |
+
"Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5\n",
|
282 |
+
"553467096/553467096 [==============================] - 9s 0us/step\n",
|
283 |
+
"Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels.h5\n",
|
284 |
+
"96112376/96112376 [==============================] - 1s 0us/step\n",
|
285 |
+
"Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/mobilenet_v2/mobilenet_v2_weights_tf_dim_ordering_tf_kernels_1.0_224.h5\n",
|
286 |
+
"14536120/14536120 [==============================] - 0s 0us/step\n",
|
287 |
+
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
|
288 |
+
"\n",
|
289 |
+
"Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
|
290 |
+
"Running on public URL: https://bc9c4277de0c1cb0c9.gradio.live\n",
|
291 |
+
"\n",
|
292 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"output_type": "display_data",
|
297 |
+
"data": {
|
298 |
+
"text/plain": [
|
299 |
+
"<IPython.core.display.HTML object>"
|
300 |
+
],
|
301 |
+
"text/html": [
|
302 |
+
"<div><iframe src=\"https://bc9c4277de0c1cb0c9.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
"metadata": {}
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"output_type": "stream",
|
309 |
+
"name": "stdout",
|
310 |
+
"text": [
|
311 |
+
"1/1 [==============================] - 0s 178ms/step\n",
|
312 |
+
"1/1 [==============================] - 1s 1s/step\n",
|
313 |
+
"Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_index.json\n",
|
314 |
+
"35363/35363 [==============================] - 0s 0us/step\n",
|
315 |
+
"1/1 [==============================] - 1s 755ms/step\n",
|
316 |
+
"1/1 [==============================] - 2s 2s/step\n",
|
317 |
+
"Keyboard interruption in main thread... closing server.\n",
|
318 |
+
"Killing tunnel 127.0.0.1:7860 <> https://bc9c4277de0c1cb0c9.gradio.live\n"
|
319 |
+
]
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"output_type": "execute_result",
|
323 |
+
"data": {
|
324 |
+
"text/plain": []
|
325 |
+
},
|
326 |
+
"metadata": {},
|
327 |
+
"execution_count": 14
|
328 |
+
}
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"cell_type": "code",
|
333 |
+
"source": [],
|
334 |
+
"metadata": {
|
335 |
+
"id": "6p0TTCYYH2XA"
|
336 |
+
},
|
337 |
+
"execution_count": null,
|
338 |
+
"outputs": []
|
339 |
+
}
|
340 |
+
]
|
341 |
+
}
|
image_classifier_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5528c5c25c770c8ab4355b551b6856c842b7ef2507e81dfcf8674a2fd9f0ba98
|
3 |
+
size 5045112
|
inception_v3_model.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow import keras
|
3 |
+
from tensorflow.keras import layers
|
4 |
+
|
5 |
+
class InceptionV3Classifier:
|
6 |
+
def __init__(self):
|
7 |
+
self.model = keras.applications.InceptionV3(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000)
|
8 |
+
|
9 |
+
def preprocess_image(self, image):
|
10 |
+
img = keras.preprocessing.image.array_to_img(image)
|
11 |
+
img = img.resize((299, 299))
|
12 |
+
img_array = keras.preprocessing.image.img_to_array(img)
|
13 |
+
img_array = tf.expand_dims(img_array, 0)
|
14 |
+
img_array = keras.applications.vgg16.preprocess_input(img_array)
|
15 |
+
return img_array
|
16 |
+
|
17 |
+
def classify_image(self, image):
|
18 |
+
|
19 |
+
# Preprocess the image
|
20 |
+
img_array = self.preprocess_image(image)
|
21 |
+
|
22 |
+
# Classify the image
|
23 |
+
predictions = self.model.predict(img_array)
|
24 |
+
predicted_classes = keras.applications.imagenet_utils.decode_predictions(predictions, top=3)[0]
|
25 |
+
|
26 |
+
return predicted_classes
|
mobilevet_v2.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow import keras
|
3 |
+
from tensorflow.keras import layers
|
4 |
+
|
5 |
+
class MobileNetClassifier:
|
6 |
+
def __init__(self):
|
7 |
+
self.model = keras.applications.MobileNetV2(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000)
|
8 |
+
|
9 |
+
def preprocess_image(self, image):
|
10 |
+
img = keras.preprocessing.image.array_to_img(image)
|
11 |
+
img = img.resize((224, 224))
|
12 |
+
img_array = keras.preprocessing.image.img_to_array(img)
|
13 |
+
img_array = tf.expand_dims(img_array, 0)
|
14 |
+
img_array = keras.applications.resnet50.preprocess_input(img_array)
|
15 |
+
return img_array
|
16 |
+
|
17 |
+
def classify_image(self, image):
|
18 |
+
|
19 |
+
# Preprocess the image
|
20 |
+
img_array = self.preprocess_image(image)
|
21 |
+
|
22 |
+
# Classify the image
|
23 |
+
predictions = self.model.predict(img_array)
|
24 |
+
predicted_classes = keras.applications.imagenet_utils.decode_predictions(predictions, top=3)[0]
|
25 |
+
|
26 |
+
return predicted_classes
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Base ----------------------------------------
|
2 |
+
matplotlib>=3.2.2
|
3 |
+
numpy>=1.21.6
|
4 |
+
opencv-python>=4.6.0
|
5 |
+
Pillow>=7.1.2
|
6 |
+
PyYAML>=5.3.1
|
7 |
+
requests>=2.23.0
|
8 |
+
scipy>=1.4.1
|
9 |
+
gradio>=3.36.1
|
10 |
+
tensorflow==2.12.0
|
11 |
+
tensorflow-datasets==4.9.2
|
12 |
+
|
13 |
+
# Plotting ------------------------------------
|
14 |
+
pandas>=1.1.4
|
15 |
+
seaborn>=0.11.0
|
16 |
+
|
17 |
+
|
18 |
+
# Extras --------------------------------------
|
19 |
+
psutil # system utilization
|
20 |
+
thop>=0.1.1 # FLOPs computation
|
resnet_model.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow import keras
|
3 |
+
from tensorflow.keras import layers
|
4 |
+
|
5 |
+
class ResNetClassifier:
|
6 |
+
def __init__(self):
|
7 |
+
self.model = keras.applications.ResNet50(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000)
|
8 |
+
|
9 |
+
def preprocess_image(self, image):
|
10 |
+
img = keras.preprocessing.image.array_to_img(image)
|
11 |
+
img = img.resize((224, 224))
|
12 |
+
img_array = keras.preprocessing.image.img_to_array(img)
|
13 |
+
img_array = tf.expand_dims(img_array, 0)
|
14 |
+
img_array = keras.applications.resnet50.preprocess_input(img_array)
|
15 |
+
return img_array
|
16 |
+
|
17 |
+
def classify_image(self, image):
|
18 |
+
# Preprocess the image
|
19 |
+
img_array = self.preprocess_image(image)
|
20 |
+
|
21 |
+
# Classify the image
|
22 |
+
predictions = self.model.predict(img_array)
|
23 |
+
predicted_classes = keras.applications.imagenet_utils.decode_predictions(predictions, top=3)[0]
|
24 |
+
|
25 |
+
return predicted_classes
|
vgg16_model.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow import keras
|
3 |
+
from tensorflow.keras import layers
|
4 |
+
|
5 |
+
class VGG16Classifier:
|
6 |
+
def __init__(self):
|
7 |
+
self.model = keras.applications.VGG16(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000)
|
8 |
+
|
9 |
+
def preprocess_image(self, image):
|
10 |
+
img = keras.preprocessing.image.array_to_img(image)
|
11 |
+
img = img.resize((224, 224))
|
12 |
+
img_array = keras.preprocessing.image.img_to_array(img)
|
13 |
+
img_array = tf.expand_dims(img_array, 0)
|
14 |
+
img_array = keras.applications.vgg16.preprocess_input(img_array)
|
15 |
+
return img_array
|
16 |
+
|
17 |
+
def classify_image(self, image):
|
18 |
+
|
19 |
+
# Preprocess the image
|
20 |
+
img_array = self.preprocess_image(image)
|
21 |
+
|
22 |
+
# Classify the image
|
23 |
+
predictions = self.model.predict(img_array)
|
24 |
+
predicted_classes = keras.applications.imagenet_utils.decode_predictions(predictions, top=3)[0]
|
25 |
+
|
26 |
+
return predicted_classes
|