File size: 13,439 Bytes
31607dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 9,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "OdOgOEqcDzhY",
        "outputId": "a1787cb0-c94a-4145-ef35-bb222f63a373"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n",
            "/content/drive/My Drive/My Projects/Image_Classifier_TensorFlow\n"
          ]
        }
      ],
      "source": [
        "# This mounts your Google Drive to the Colab VM.\n",
        "from google.colab import drive\n",
        "drive.mount('/content/drive')\n",
        "\n",
        "%cd /content/drive/My\\ Drive/My\\ Projects/Image_Classifier_TensorFlow"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "pwd"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 36
        },
        "id": "EuUA1qNaEdGB",
        "outputId": "b9b3ca06-157a-4686-92ab-72c080dddcfb"
      },
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "'/content/drive/My Drive/My Projects/Image_Classifier_TensorFlow'"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            }
          },
          "metadata": {},
          "execution_count": 10
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Gradio App"
      ],
      "metadata": {
        "id": "6XXQqgGmErXJ"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# installations\n",
        "!pip install gradio"
      ],
      "metadata": {
        "id": "wSuhvzbEE8Ql"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Training"
      ],
      "metadata": {
        "id": "71zplmVlFU9J"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "print(\"Training model...\")\n",
        "# Create an instance of the ImageClassifier\n",
        "classifier = ImageClassifier()\n",
        "\n",
        "# Load the dataset\n",
        "(x_train, y_train), (x_test, y_test) = classifier.load_dataset()\n",
        "\n",
        "# Build and train the model\n",
        "classifier.build_model(x_train)\n",
        "classifier.train_model(x_train, y_train, batch_size=64, epochs=1, validation_split=0.1)\n",
        "\n",
        "# Evaluate the model\n",
        "classifier.evaluate_model(x_test, y_test)\n",
        "\n",
        "# Save the trained model\n",
        "print(\"Saving model ...\")\n",
        "classifier.save_model(\"image_classifier_model.h5\")"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Q9vKOsnKFRu4",
        "outputId": "93268865-5288-44a3-bc09-6d30620655f8"
      },
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Training model...\n",
            "704/704 [==============================] - 187s 263ms/step - loss: 1.5925 - accuracy: 0.4633 - val_loss: 1.3171 - val_accuracy: 0.5372\n",
            "Test loss: 1.3429059982299805\n",
            "Test accuracy: 0.5228999853134155\n",
            "Saving model ...\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import gradio as gr\n",
        "import tensorflow as tf\n",
        "from tensorflow import keras\n",
        "from custom_model import ImageClassifier\n",
        "from resnet_model import ResNetClassifier\n",
        "from vgg16_model import VGG16Classifier\n",
        "from inception_v3_model import InceptionV3Classifier\n",
        "from mobilevet_v2 import MobileNetClassifier\n",
        "\n",
        "CLASS_NAMES =['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', 'Dog', 'Frog', 'Horse', 'Ship', 'Truck']\n",
        "\n",
        "# models\n",
        "custom_model = ImageClassifier()\n",
        "custom_model.load_model(\"image_classifier_model.h5\")\n",
        "resnet_model = ResNetClassifier()\n",
        "vgg16_model = VGG16Classifier()\n",
        "inceptionV3_model = InceptionV3Classifier()\n",
        "mobilenet_model = MobileNetClassifier()\n",
        "\n",
        "def make_prediction(image, model_type):\n",
        "  if \"CNN (2 layer) - Custom\" == model_type:\n",
        "    top_classes, top_probs = custom_model.classify_image(image, top_k=3)\n",
        "    return {CLASS_NAMES[cls_id]:str(prob) for cls_id, prob in zip(top_classes, top_probs)}\n",
        "  elif \"ResNet50\" == model_type:\n",
        "    predictions = resnet_model.classify_image(image)\n",
        "    return {class_name:str(prob) for _, class_name, prob in predictions}\n",
        "  elif \"VGG16\" == model_type:\n",
        "    predictions = vgg16_model.classify_image(image)\n",
        "    return {class_name:str(prob) for _, class_name, prob in predictions}\n",
        "  elif \"Inception v3\" == model_type:\n",
        "    predictions = inceptionV3_model.classify_image(image)\n",
        "    return {class_name:str(prob) for _, class_name, prob in predictions}\n",
        "  elif \"Mobile Net v2\" == model_type:\n",
        "    predictions = mobilenet_model.classify_image(image)\n",
        "    return {class_name:str(prob) for _, class_name, prob in predictions}\n",
        "  else:\n",
        "    return {\"Select a model to classify image\"}\n",
        "\n",
        "def train_model(epochs, batch_size, validation_split):\n",
        "\n",
        "  print(\"Training model\")\n",
        "\n",
        "  # Create an instance of the ImageClassifier\n",
        "  classifier = ImageClassifier()\n",
        "\n",
        "  # Load the dataset\n",
        "  (x_train, y_train), (x_test, y_test) = classifier.load_dataset()\n",
        "\n",
        "  # Build and train the model\n",
        "  classifier.build_model(x_train)\n",
        "  classifier.train_model(x_train, y_train, batch_size=int(batch_size), epochs=int(epochs), validation_split=float(validation_split))\n",
        "\n",
        "  # Evaluate the model\n",
        "  classifier.evaluate_model(x_test, y_test)\n",
        "\n",
        "  # Save the trained model\n",
        "  print(\"Saving model ...\")\n",
        "  classifier.save_model(\"image_classifier_model.h5\")\n",
        "\n",
        "  custom_model = classifier\n",
        "\n",
        "\n",
        "def update_train_param_display(model_type):\n",
        "  if \"CNN (2 layer) - Custom\" == model_type:\n",
        "    return [gr.update(visible=True), gr.update(visible=False)]\n",
        "  return [gr.update(visible=False), gr.update(visible=True)]\n",
        "\n",
        "if __name__ == \"__main__\":\n",
        "  # gradio gui app\n",
        "  with gr.Blocks() as my_app:\n",
        "    gr.Markdown(\"<h1><center>Image Classification using TensorFlow</center></h1>\")\n",
        "    gr.Markdown(\"<h3><center>This model classifies image using different models.</center></h3>\")\n",
        "\n",
        "    with gr.Row():\n",
        "      with gr.Column(scale=1):\n",
        "          img_input = gr.Image()\n",
        "          model_type = gr.Dropdown(\n",
        "              [\"CNN (2 layer) - Custom\",\n",
        "                \"ResNet50\",\n",
        "                \"VGG16\",\n",
        "                \"Inception v3\",\n",
        "                \"Mobile Net v2\"],\n",
        "              label=\"Model Type\", value=\"CNN (2 layer) - Custom\",\n",
        "              info=\"Select the inference model before running predictions!\")\n",
        "\n",
        "          with gr.Column() as train_col:\n",
        "            gr.Markdown(\"Train Parameters\")\n",
        "            with gr.Row():\n",
        "              epochs_inp = gr.Textbox(label=\"Epochs\", value=\"10\")\n",
        "              validation_split = gr.Textbox(label=\"Validation Split\", value=\"0.1\")\n",
        "\n",
        "            with gr.Row():\n",
        "              batch_size = gr.Textbox(label=\"Batch Size\", value=\"64\")\n",
        "\n",
        "            with gr.Row():\n",
        "              train_btn = gr.Button(value=\"Train\")\n",
        "              predict_btn_1 = gr.Button(value=\"Predict\")\n",
        "\n",
        "          with gr.Column(visible=False) as no_train_col:\n",
        "            predict_btn_2 = gr.Button(value=\"Predict\")\n",
        "\n",
        "      with gr.Column(scale=1):\n",
        "        output_label = gr.Label()\n",
        "\n",
        "    # app logic\n",
        "    predict_btn_1.click(make_prediction, inputs=[img_input, model_type], outputs=[output_label])\n",
        "    predict_btn_2.click(make_prediction, inputs=[img_input, model_type], outputs=[output_label])\n",
        "    model_type.change(update_train_param_display, inputs=model_type, outputs=[train_col, no_train_col])\n",
        "    train_btn.click(train_model, inputs=[epochs_inp, batch_size, validation_split], outputs=[])\n",
        "\n",
        "my_app.queue(concurrency_count=5, max_size=20).launch(debug=True)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 936
        },
        "id": "1N6d3Y0oEozx",
        "outputId": "07cc9273-30a8-4186-f0bf-e14a5aa45216"
      },
      "execution_count": 14,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels.h5\n",
            "102967424/102967424 [==============================] - 1s 0us/step\n",
            "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5\n",
            "553467096/553467096 [==============================] - 9s 0us/step\n",
            "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels.h5\n",
            "96112376/96112376 [==============================] - 1s 0us/step\n",
            "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/mobilenet_v2/mobilenet_v2_weights_tf_dim_ordering_tf_kernels_1.0_224.h5\n",
            "14536120/14536120 [==============================] - 0s 0us/step\n",
            "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
            "\n",
            "Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
            "Running on public URL: https://bc9c4277de0c1cb0c9.gradio.live\n",
            "\n",
            "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<div><iframe src=\"https://bc9c4277de0c1cb0c9.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "1/1 [==============================] - 0s 178ms/step\n",
            "1/1 [==============================] - 1s 1s/step\n",
            "Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_index.json\n",
            "35363/35363 [==============================] - 0s 0us/step\n",
            "1/1 [==============================] - 1s 755ms/step\n",
            "1/1 [==============================] - 2s 2s/step\n",
            "Keyboard interruption in main thread... closing server.\n",
            "Killing tunnel 127.0.0.1:7860 <> https://bc9c4277de0c1cb0c9.gradio.live\n"
          ]
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": []
          },
          "metadata": {},
          "execution_count": 14
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "6p0TTCYYH2XA"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}