Spaces:
Sleeping
Sleeping
File size: 20,385 Bytes
1601503 9a3ad8c 1601503 a18c061 f70ff88 80ba866 9550b46 1601503 0320c4b dfefc49 0320c4b e545e34 0320c4b fc811e2 7414c03 73e5d20 7414c03 eb68218 7414c03 015eded 7414c03 15831bd 1e394f6 7414c03 e440823 2344a54 15831bd 1e394f6 2344a54 7414c03 98c495a 8a4dc94 cdec4c2 7414c03 015eded 15be7c5 7175dc6 67a1863 7175dc6 8b020ec 9562ed8 8b020ec ec7bb7d 8b020ec 9b14029 8b020ec baab02c 704c2f4 8b020ec 9b14029 8b020ec 722c532 8b020ec dfefc49 9a3541b 8b020ec e499849 b8b7c59 c4b43e7 b8b7c59 c4b43e7 b8b7c59 7dbcf77 8b020ec fa19d2f 9550b46 10eb858 fa19d2f 9550b46 10eb858 9550b46 eef3a21 9550b46 7d50af2 9550b46 8b020ec c8ecb02 8b020ec c8ecb02 8b020ec c8ecb02 8b020ec c8ecb02 20f5fc7 ec553ba 8b020ec c8ecb02 8b020ec c8ecb02 8b020ec 015eded ac16cb8 c6292f2 8b020ec c663fff 015eded 977daae 2d0046e 015eded 9cf38ad 6ebce69 9cf38ad 2d0046e 7e45f68 2d0046e 2136522 977daae 03d8b79 911f461 7e45f68 8b020ec c6292f2 2136522 4b7b969 dd23fdc 4b7b969 1ff7989 90c3a2c 4b7b969 08cdd38 4b7b969 722c532 977daae 08cdd38 1ff7989 722c532 dd23fdc 4b7b969 fa19d2f 08cdd38 1ff7989 8b020ec 8f02d73 c2c0cae 8f02d73 5bb1e50 8f02d73 5bb1e50 8f02d73 5bb1e50 8b020ec d17c728 c4ff2f7 c6292f2 13f2313 d17c728 c4ff2f7 13f2313 ac16cb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import numpy as np
import pandas as pd # type: ignore
import os
import keras
import tensorflow as tf
from tensorflow.keras.models import load_model
import pymongo
import streamlit as st
from sentence_transformers import SentenceTransformer
from langchain.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from langchain_core.messages import HumanMessage, SystemMessage
from PIL import Image
import json
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
import textwrap
import plotly.graph_objects as go
st.set_page_config(
page_title="Food Chain",
page_icon="π΄",
layout="wide"
)
# Main App
if "theme_mode" not in st.session_state:
st.session_state.theme_mode = st.get_option("theme.base")
# Check for changes in theme mode
current_theme_mode = st.get_option("theme.base")
if current_theme_mode != st.session_state.theme_mode:
st.session_state.theme_mode = current_theme_mode
st.experimental_rerun()
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
mongo_uri = os.getenv("MONGO_URI_RAG_RECIPE")
@st.cache_resource
def loadEmbedding():
embedding = SentenceTransformer("thenlper/gte-large")
return embedding
embedding = loadEmbedding()
def getEmbedding(text):
if not text.strip():
print("Text was empty")
return []
encoded = embedding.encode(text)
return encoded.tolist()
# Connect to MongoDB
def get_mongo_client(mongo_uri):
try:
client = pymongo.MongoClient(mongo_uri)
print("Connection to MongoDB successful")
return client
except pymongo.errors.ConnectionFailure as e:
print(f"Connection failed: {e}")
return None
if not mongo_uri:
print("MONGO_URI not set in env")
mongo_client = get_mongo_client(mongo_uri)
mongo_db = mongo_client['recipes']
mongo_collection = mongo_db['recipesCollection']
def vector_search(user_query, collection):
query_embedding = getEmbedding(user_query)
if query_embedding is None:
return "Invalid query or embedding gen failed"
vector_search_stage = {
"$vectorSearch": {
"index": "vector_index",
"queryVector": query_embedding,
"path": "embedding",
"numCandidates": 150, # Number of candidate matches to consider
"limit": 4 # Return top 4 matches
}
}
unset_stage = {
"$unset": "embedding" # Exclude the 'embedding' field from the results
}
project_stage = {
"$project": {
"_id": 0, # Exclude the _id field
"name": 1,
"minutes": 1,
"tags": 1,
"n_steps": 1,
"description": 1,
"ingredients": 1,
"n_ingredients": 1,
"formatted_nutrition": 1,
"formatted_steps": 1,
"score": {
"$meta": "vectorSearchScore" # Include the search score
}
}
}
pipeline = [vector_search_stage, unset_stage, project_stage]
results = mongo_collection.aggregate(pipeline)
return list(results)
def mongo_retriever(query):
print("mongo retriever query: ", query)
documents = vector_search(query, mongo_collection)
print("Documents Retrieved: ", documents)
return documents
template = """
You are an assistant for generating results based on user questions.
Use the provided context to generate a result based on the following JSON format:
{{
"name": "Recipe Name",
"minutes": 0,
"tags": [
"tag1",
"tag2",
"tag3"
],
"n_steps": 0,
"description": "A GENERAL description of the recipe goes here.",
"ingredients": [
"0 tablespoons ingredient1",
"0 cups ingredient2",
"0 teaspoons ingredient3"
],
"n_ingredients": 0,
"formatted_nutrition": [
"Calorie : per serving",
"Total Fat : % daily value",
"Sugar : % daily value",
"Sodium : % daily value",
"Protein : % daily value",
"Saturated Fat : % daily value",
"Total Carbohydrate : % daily value"
],
"formatted_steps": [
"1. Step 1 of the recipe.",
"2. Step 2 of the recipe.",
"3. Step 3 of the recipe."
]
}}
Instructions:
1. Focus on the user's specific request and avoid irrelevant ingredients or approaches.
2. Do not return anything other than the JSON.
3. Base the response on simple, healthy, and accessible ingredients and techniques.
4. Rewrite the description in third person
5. Include the ingredient amounts and say them in the steps.
6. If the query makes no sense when trying to connection to a real dish, return []
7. RETURN NOTHING BUT THE JSON
When choosing a recipe from the context, FOLLOW these instructions:
1. The recipe should be makeable from scratch, using only proper ingredients and not other dishes or pre-made recipes
2. If the recipes from the context makes sense but do not match {question}, generate an amazing, specific recipe for {question}
with precise steps and measurements. Take some inspiration from context if availab.e
3. Following the above template.
4. If the query makes no sense when trying to connection to a real dish, return []
5. RETURN NOTHING BUT THE JSON
Context: {context}
Question: {question}
"""
custom_rag_prompt = ChatPromptTemplate.from_template(template)
llm = ChatOpenAI(
model_name="hf:meta-llama/Llama-3.3-70B-Instruct",
api_key = os.environ.get('GLHF_API_KEY'),
base_url = 'https://glhf.chat/api/openai/v1',
temperature=0.2)
rag_chain = (
{"context": mongo_retriever, "question": RunnablePassthrough()}
| custom_rag_prompt
| llm
| StrOutputParser()
)
def get_response(query):
if query:
print("get_response query: ", query)
return rag_chain.invoke(query)
return ""
##############################################
# Classifier
img_size = 224
@st.cache_resource
def loadModel():
model = load_model('efficientnet-fine-d1.keras')
return model
model = loadModel()
class_names = [
"apple_pie", "baby_back_ribs", "baklava", "beef_carpaccio", "beef_tartare", "beet_salad",
"beignets", "bibimbap", "bread_pudding", "breakfast_burrito", "bruschetta", "caesar_salad",
"cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheese_plate", "cheesecake", "chicken_curry",
"chicken_quesadilla", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder",
"club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "deviled_eggs", "donuts",
"dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras",
"french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt",
"garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "grilled_salmon", "guacamole", "gyoza",
"hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna",
"lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels",
"nachos", "omelette", "onion_rings", "oysters", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck",
"pho", "pizza", "pork_chop", "poutine", "prime_rib", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake",
"risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "spaghetti_bolognese",
"spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu",
"tuna_tartare", "waffles"
]
def classifyImage(input_image):
input_image = input_image.resize((img_size, img_size))
input_array = tf.keras.utils.img_to_array(input_image)
# Add a batch dimension
input_array = tf.expand_dims(input_array, 0) # (1, 224, 224, 3)
predictions = model.predict(input_array)[0]
print(f"Predictions: {predictions}")
# Sort predictions to get top 5
top_indices = np.argsort(predictions)[-5:][::-1]
# Prepare the top 5 predictions with their class names and percentages
top_predictions = [(class_names[i], predictions[i] * 100) for i in top_indices]
for i, (class_name, confidence) in enumerate(top_predictions, 1):
print(f"{i}. Predicted {class_name} with {confidence:.1f}% Confidence")
return top_predictions
def capitalize_after_number(input_string):
# Split the string on the first period
if ". " in input_string:
num, text = input_string.split(". ", 1)
return f"{num}. {text.capitalize()}"
return input_string
##############################################
#for displaying RAG recipe response
def display_response(response):
"""
Function to format a JSON response into Streamlit's `st.write()` format.
"""
if response == "[]" or "":
st.write("No recipes found :(")
return
if isinstance(response, str):
# Convert JSON string to dictionary if necessary
response = json.loads(response)
with st.container(height=800):
st.write(f"**Name**: {response['name'].capitalize()}")
st.write(f"**Preparation Time**: {response['minutes']} minutes")
st.write(f"**Description**: {response['description'].capitalize()}")
st.write(f"**Tags**: {', '.join(response['tags'])}")
st.write("### Ingredients")
st.write(", ".join([ingredient.capitalize() for ingredient in response['ingredients']]))
st.write(f"**Total Ingredients**: {response['n_ingredients']}")
st.write("### Nutrition Information (per serving)")
st.write(", ".join(response['formatted_nutrition']))
st.write(f"Number of Steps: {response['n_steps']}")
st.write("### Steps")
for step in response['formatted_steps']:
st.write(capitalize_after_number(step))
# st.write(f"Name: {response['name'].capitalize()}")
# st.write(f"Preparation Time: {response['minutes']} minutes")
# st.write(f"Description: {response['description'].capitalize()}")
# st.write(f"Tags: {', '.join(response['tags'])}")
# st.write("### Ingredients")
# st.write(", ".join([ingredient.capitalize() for ingredient in response['ingredients']]))
# st.write(f"Total Ingredients: {response['n_ingredients']}")
# st.write("### Nutrition Information (per serving)")
# st.write(", ".join(response['formatted_nutrition']))
# st.write(f"Number of Steps: {response['n_steps']}")
# st.write("### Steps")
# for step in response['formatted_steps']:
# st.write(capitalize_after_number(step))
def display_dishes_in_grid(dishes, cols=3):
rows = len(dishes) // cols + int(len(dishes) % cols > 0)
for i in range(rows):
cols_data = dishes[i*cols:(i+1)*cols]
cols_list = st.columns(len(cols_data))
for col, dish in zip(cols_list, cols_data):
with col:
st.sidebar.write(dish.replace("_", " ").capitalize())
def display_prediction_graph(class_names, confidences):
# Create a list of labels and values from the predictions dictionary
values = [str(round(value, 1)) + "%" for value in confidences]
# Wrap class names if they are too long
class_names = [textwrap.fill(class_name, width=10) for class_name in class_names]
# Determine the top prediction
class_names.reverse()
# Determine the top prediction
values.reverse()
top_prediction = class_names[-1]
# Create a horizontal bar chart
fig = go.Figure(go.Bar(
x=values,
y=class_names,
orientation='h',
marker=dict(color='orange'),
text=values, # Display values on the bars
textposition='inside' # Position the text inside the bars
))
# Update layout for better appearance
fig.update_layout(
title=f"Prediction: {top_prediction}",
margin=dict(l=20, r=20, t=60, b=20),
xaxis=dict(
showgrid=False, # No grid lines for the x-axis
ticks='', # No x-axis ticks
showticklabels=False # No x-axis tick labels
),
yaxis=dict(
showgrid=False # No grid lines for the y-axis
),
plot_bgcolor='rgba(0,0,0,0)', # No background color for the plot area
paper_bgcolor='rgba(0,0,0,0)', # No background color for the paper area
font=dict() # Default font color
)
# Display the chart in Streamlit
st.plotly_chart(fig)
# #Streamlit
#Left sidebar title
st.sidebar.markdown(
"<h1 style='font-size:32px;'>Food-Chain</h1>",
unsafe_allow_html=True
)
st.sidebar.write("Upload an image and/or enter a query to get started! Explore our trained dish types listed below for guidance.")
st.sidebar.markdown('### Food Classification')
uploaded_image = st.sidebar.file_uploader("Choose an image:", type="jpg")
st.sidebar.markdown('### RAG Recipe')
query = st.sidebar.text_area("Enter your query (optional):", height=100)
recipe_submit = st.sidebar.button(label='Chain Recipe', icon=':material/link:', use_container_width=True)
# gap
st.sidebar.markdown("<br><br>", unsafe_allow_html=True)
st.sidebar.markdown("### Dish Database")
selected_dish = st.sidebar.selectbox(
"Search for a dish that our model can classify:",
options=class_names,
index=0
)
# Main title
st.title("Welcome to FOOD CHAIN!")
with st.expander("**What is FOOD CHAIN?**"):
st.markdown(
"""
The project aims to use machine learning and computer vision techniques to analyze food images
and identify them. By using diverse datasets, the model will learn to recognize dishes based on
visual features. Our project aims to inform users about what it is they are eating, including
potential nutritional value and an AI generated response on how their dish might have been prepared.
We want users to have an easy way to figure out what their favorite foods contain, to know any
allergens in the food and to better connect to the food around them. This tool can also tell users
the calories of their dish, they can figure out the nutrients with only a few steps!
Thank you for using our project!
Made by the Classify Crew: [Contact List](https://linktr.ee/classifycrew)
"""
)
#################
sample_RAG = {
"name": "Cinnamon Sugar Baked Donuts",
"minutes": 27,
"tags": [
"30-minutes-or-less",
"time-to-make",
"course",
"cuisine",
"preparation",
"occasion",
"north-american",
"healthy",
"desserts",
"american",
"dietary",
"comfort-food",
"taste-mood"
],
"n_steps": 10,
"description": "A delightful treat with a crusty sugar-cinnamon coating, perfect for a weekend breakfast or snack. Leftovers freeze well.",
"ingredients": [
"1 cup flour",
"1 teaspoon baking powder",
"1 teaspoon cinnamon",
"1/2 teaspoon nutmeg",
"1/4 teaspoon mace",
"1/4 teaspoon salt",
"1/2 cup sugar",
"1 egg",
"1/2 cup milk",
"2 tablespoons butter, melted",
"1 teaspoon vanilla",
"1/4 cup brown sugar"
],
"n_ingredients": 12,
"formatted_nutrition": [
"Calorie : 302.9 per serving",
"Total Fat : 11.0 % daily value",
"Sugar : 154.0 % daily value",
"Sodium : 9.0 % daily value",
"Protein : 7.0 % daily value",
"Saturated Fat : 22.0 % daily value",
"Total Carbohydrate : 18.0 % daily value"
],
"formatted_steps": [
"1. Mix all dry ingredients in a medium-size bowl",
"2. In a smaller bowl, beat the egg",
"3. Mix the egg with milk and melted butter",
"4. Add vanilla to the mixture",
"5. Stir the milk mixture into the dry ingredients until just combined, being careful not to overmix",
"6. Pour the batter into a greased donut baking tin, filling approximately 3/4 full",
"7. Mix cinnamon into brown sugar and sprinkle over the donuts",
"8. Drizzle or spoon melted butter over the top of each donut",
"9. Bake in a 350-degree oven for 17 minutes",
"10. Enjoy!"
]
}
col1, col2 = st.columns(2)
with col1:
st.title("Image Classification")
if not uploaded_image:
placeholder = Image.open("dish-placeholder.jpg")
st.image(placeholder, caption="Placeholder Image.", use_container_width=True)
sample_class_names = ['Donuts', 'Onion Rings', 'Beignets', 'Churros', 'Cup Cakes']
sample_confidences = [98.1131911277771, 1.3879689387977123, 0.12678804341703653, 0.05296396557241678, 0.04436225863173604]
display_prediction_graph(sample_class_names, sample_confidences)
else:
# Open and display image
input_image = Image.open(uploaded_image)
st.image(input_image, caption="Uploaded Image.", use_container_width=True)
with col2:
st.title('RAG Recipe')
if not recipe_submit:
display_response(sample_RAG)
# Image Classification Section
if recipe_submit and uploaded_image:
with col1:
predictions = classifyImage(input_image)
print("Predictions: ", predictions)
# graph variables
fpredictions = ""
class_names = []
confidences = []
# Show the top predictions with percentages
# st.write("Top Predictions:")
for class_name, confidence in predictions:
fpredictions += f"{class_name}: {confidence:.1f}%,"
class_name = class_name.replace("_", " ")
class_name = class_name.title()
# st.markdown(f"*{class_name}*: {confidence:.2f}%")
class_names.append(class_name)
confidences.append(confidence)
print(fpredictions)
display_prediction_graph(class_names, confidences)
# call openai to pick the best classification result based on query
openAICall = [
SystemMessage(
content = "You are a helpful assistant that identifies the best match between classified food items and a user's request based on provided classifications and keywords."
),
HumanMessage(
content = f"""
Based on the following image classification with percentages of each food:
{fpredictions}
And the following user request:
{query}
1. If the user's query relates to any of the classified predictions (even partially or conceptually), select the most relevant dish from the predictions.
2. If the query does not align with the predictions, disregard them and suggest a dish that best matches the user's query.
3. Consider culture, ingredients, cooking steps, etc.
4. Return in the format: [dish]
5. ONLY return the name of the dish in brackets.
Example 1:
Predictions: apple pie: 50%, cherry tart: 30%, vanilla ice cream: 20%
User query: pumpkin
YOUR Response: [pumpkin pie]
Example 2:
Predictions: spaghetti: 60%, lasagna: 30%, salad: 10%
User query: pasta with layers
YOUR Response: [lasagna]
Example 3:
Predictions: sushi: 70%, sashimi: 20%, ramen: 10%
User query: noodles
YOUR Response: [ramen]
"""
),
]
with col2, st.spinner("Generating..."):
if query:
# Call the OpenAI API
openAIresponse = llm.invoke(openAICall)
print("AI CALL RESPONSE: ", openAIresponse.content, "END AI CALL RESONSE")
RAGresponse = get_response(openAIresponse.content + " " + query)
else:
RAGresponse = get_response(predictions[0][0])
print("RAGresponse: ", RAGresponse)
display_response(RAGresponse)
elif recipe_submit and query:
with col2, st.spinner("Generating..."):
response = get_response(query)
print(response)
display_response(response)
else:
st.warning('Please input an image or a query.', icon="π")
|