Spaces:
Sleeping
Sleeping
tonyliu404
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -279,6 +279,50 @@ def display_dishes_in_grid(dishes, cols=3):
|
|
279 |
for col, dish in zip(cols_list, cols_data):
|
280 |
with col:
|
281 |
st.sidebar.write(dish.replace("_", " ").capitalize())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
# #Streamlit
|
283 |
|
284 |
#Left sidebar title
|
@@ -425,48 +469,8 @@ if recipe_submit and uploaded_image:
|
|
425 |
confidences.append(confidence)
|
426 |
|
427 |
print(fpredictions)
|
428 |
-
|
429 |
-
#reversing them so graph displays highest predictions at the top
|
430 |
-
confidences.reverse()
|
431 |
-
class_names.reverse()
|
432 |
-
|
433 |
-
#display as a graph
|
434 |
-
norm = plt.Normalize(min(confidences), max(confidences))
|
435 |
-
cmap = LinearSegmentedColormap.from_list("grey_orange", ["#808080", "#FFA500"]) #color map grey to orange
|
436 |
-
|
437 |
-
fig, ax = plt.subplots(figsize=(12, 6))
|
438 |
-
bars = ax.barh(class_names, confidences, color=cmap(norm(confidences)))
|
439 |
-
|
440 |
-
fig.patch.set_alpha(0) # Transparent background
|
441 |
-
ax.set_facecolor('none')
|
442 |
-
|
443 |
-
min_width = 0.07 * ax.get_xlim()[1] # 7% of the x-axis range
|
444 |
-
# Add labels inside the bars, aligned to the right
|
445 |
-
for bar in bars:
|
446 |
-
original_width = bar.get_width()
|
447 |
-
width = original_width
|
448 |
-
if width < min_width:
|
449 |
-
width = min_width
|
450 |
-
ax.text(width - 0.02, bar.get_y() + bar.get_height()/2, f'{original_width:.1f}%',
|
451 |
-
va='center', ha='right', color='white', fontweight='bold', fontsize=16)
|
452 |
-
|
453 |
-
ax.set_xticklabels([]) #remove x label
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
# Wrapping labels
|
458 |
-
max_label_width = 10
|
459 |
-
labels = ax.get_yticklabels()
|
460 |
-
wrapped_labels = [textwrap.fill(label.get_text(), width=max_label_width) for label in labels] # Wrap the labels if they exceed the max width
|
461 |
-
ax.set_yticklabels(wrapped_labels, fontsize=16, color='white')
|
462 |
-
|
463 |
-
#no borders
|
464 |
-
for spine in ax.spines.values():
|
465 |
-
spine.set_visible(False)
|
466 |
-
|
467 |
-
ax.set_title(class_names[-1], color='white', fontsize=24, fontweight='bold', ha='left')
|
468 |
|
469 |
-
st.pyplot(fig) # Display the plot
|
470 |
|
471 |
# call openai to pick the best classification result based on query
|
472 |
openAICall = [
|
|
|
279 |
for col, dish in zip(cols_list, cols_data):
|
280 |
with col:
|
281 |
st.sidebar.write(dish.replace("_", " ").capitalize())
|
282 |
+
|
283 |
+
def display_prediction_graph(class_names, confidences):
|
284 |
+
print("CLASS NAMES: ", class_names)
|
285 |
+
print("CONFIDENCES", confidences)
|
286 |
+
#reversing them so graph displays highest predictions at the top
|
287 |
+
confidences.reverse()
|
288 |
+
class_names.reverse()
|
289 |
+
|
290 |
+
#display as a graph
|
291 |
+
norm = plt.Normalize(min(confidences), max(confidences))
|
292 |
+
cmap = LinearSegmentedColormap.from_list("grey_orange", ["#808080", "#FFA500"]) #color map grey to orange
|
293 |
+
|
294 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
295 |
+
bars = ax.barh(class_names, confidences, color=cmap(norm(confidences)))
|
296 |
+
|
297 |
+
fig.patch.set_alpha(0) # Transparent background
|
298 |
+
ax.set_facecolor('none')
|
299 |
+
|
300 |
+
min_width = 0.07 * ax.get_xlim()[1] # 7% of the x-axis range
|
301 |
+
# Add labels inside the bars, aligned to the right
|
302 |
+
for bar in bars:
|
303 |
+
original_width = bar.get_width()
|
304 |
+
width = original_width
|
305 |
+
if width < min_width:
|
306 |
+
width = min_width
|
307 |
+
ax.text(width - 0.02, bar.get_y() + bar.get_height()/2, f'{original_width:.1f}%',
|
308 |
+
va='center', ha='right', color='white', fontweight='bold', fontsize=16)
|
309 |
+
|
310 |
+
ax.set_xticklabels([]) #remove x label
|
311 |
+
|
312 |
+
# Wrapping labels
|
313 |
+
max_label_width = 10
|
314 |
+
labels = ax.get_yticklabels()
|
315 |
+
wrapped_labels = [textwrap.fill(label.get_text(), width=max_label_width) for label in labels] # Wrap the labels if they exceed the max width
|
316 |
+
ax.set_yticklabels(wrapped_labels, fontsize=16, color='white')
|
317 |
+
|
318 |
+
#no borders
|
319 |
+
for spine in ax.spines.values():
|
320 |
+
spine.set_visible(False)
|
321 |
+
|
322 |
+
ax.set_title(class_names[-1], color='white', fontsize=24, fontweight='bold', ha='left')
|
323 |
+
|
324 |
+
st.pyplot(fig) # Display the plot
|
325 |
+
|
326 |
# #Streamlit
|
327 |
|
328 |
#Left sidebar title
|
|
|
469 |
confidences.append(confidence)
|
470 |
|
471 |
print(fpredictions)
|
472 |
+
display_prediction_graph(class_names, confidences)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
|
|
|
474 |
|
475 |
# call openai to pick the best classification result based on query
|
476 |
openAICall = [
|