3v324v23's picture
Add files
c9019cd
|
raw
history blame
4.78 kB

Prime Sample Attention in Object Detection

Introduction

@inproceedings{cao2019prime,
  title={Prime sample attention in object detection},
  author={Cao, Yuhang and Chen, Kai and Loy, Chen Change and Lin, Dahua},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

Results and models

PISA Network Backbone Lr schd box AP mask AP Config Download
Γ— Faster R-CNN R-50-FPN 1x 36.4 -
√ Faster R-CNN R-50-FPN 1x 38.4 config model | log
Γ— Faster R-CNN X101-32x4d-FPN 1x 40.1 -
√ Faster R-CNN X101-32x4d-FPN 1x 41.9 config model | log
Γ— Mask R-CNN R-50-FPN 1x 37.3 34.2 -
√ Mask R-CNN R-50-FPN 1x 39.1 35.2 config model | log
Γ— Mask R-CNN X101-32x4d-FPN 1x 41.1 37.1 -
√ Mask R-CNN X101-32x4d-FPN 1x
Γ— RetinaNet R-50-FPN 1x 35.6 -
√ RetinaNet R-50-FPN 1x 36.9 config model | log
Γ— RetinaNet X101-32x4d-FPN 1x 39.0 -
√ RetinaNet X101-32x4d-FPN 1x 40.7 config model | log
Γ— SSD300 VGG16 1x 25.6 -
√ SSD300 VGG16 1x 27.6 config model | log
Γ— SSD300 VGG16 1x 29.3 -
√ SSD300 VGG16 1x 31.8 config model | log

Notes:

  • In the original paper, all models are trained and tested on mmdet v1.x, thus results may not be exactly the same with this release on v2.0.
  • It is noted PISA only modifies the training pipeline so the inference time remains the same with the baseline.