|
# Cityscapes Dataset |
|
|
|
<!-- [DATASET] --> |
|
|
|
``` |
|
@inproceedings{Cordts2016Cityscapes, |
|
title={The Cityscapes Dataset for Semantic Urban Scene Understanding}, |
|
author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt}, |
|
booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
year={2016} |
|
} |
|
``` |
|
|
|
## Common settings |
|
|
|
- All baselines were trained using 8 GPU with a batch size of 8 (1 images per GPU) using the [linear scaling rule](https://arxiv.org/abs/1706.02677) to scale the learning rate. |
|
- All models were trained on `cityscapes_train`, and tested on `cityscapes_val`. |
|
- 1x training schedule indicates 64 epochs which corresponds to slightly less than the 24k iterations reported in the original schedule from the [Mask R-CNN paper](https://arxiv.org/abs/1703.06870) |
|
- COCO pre-trained weights are used to initialize. |
|
- A conversion [script](../../tools/dataset_converters/cityscapes.py) is provided to convert Cityscapes into COCO format. Please refer to [install.md](../../docs/1_exist_data_model.md#prepare-datasets) for details. |
|
- `CityscapesDataset` implemented three evaluation methods. `bbox` and `segm` are standard COCO bbox/mask AP. `cityscapes` is the cityscapes dataset official evaluation, which may be slightly higher than COCO. |
|
|
|
### Faster R-CNN |
|
|
|
| Backbone | Style | Lr schd | Scale | Mem (GB) | Inf time (fps) | box AP | Config | Download | |
|
| :-------------: | :-----: | :-----: | :---: | :------: | :------------: | :----: | :------: | :--------: | |
|
| R-50-FPN | pytorch | 1x | 800-1024 | 5.2 | - | 40.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes_20200502-829424c0.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes_20200502_114915.log.json) | |
|
|
|
### Mask R-CNN |
|
|
|
| Backbone | Style | Lr schd | Scale | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download | |
|
| :-------------: | :-----: | :-----: | :------: | :------: | :------------: | :----: | :-----: | :------: | :------: | |
|
| R-50-FPN | pytorch | 1x | 800-1024 | 5.3 | - | 40.9 | 36.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes/mask_rcnn_r50_fpn_1x_cityscapes_20201211_133733-d2858245.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes/mask_rcnn_r50_fpn_1x_cityscapes_20201211_133733.log.json) | |
|
|