yolov2 / model /src /crop_layer_kernels.cu
till-onethousand's picture
model
181d94d
raw
history blame
6.67 kB
#include "cuda_runtime.h"
#include "curand.h"
#include "cublas_v2.h"
extern "C" {
#include "crop_layer.h"
#include "utils.h"
#include "cuda.h"
#include "image.h"
}
__device__ float get_pixel_kernel(float *image, int w, int h, int x, int y, int c)
{
if(x < 0 || x >= w || y < 0 || y >= h) return 0;
return image[x + w*(y + c*h)];
}
__device__ float3 rgb_to_hsv_kernel(float3 rgb)
{
float r = rgb.x;
float g = rgb.y;
float b = rgb.z;
float h, s, v;
float max = (r > g) ? ( (r > b) ? r : b) : ( (g > b) ? g : b);
float min = (r < g) ? ( (r < b) ? r : b) : ( (g < b) ? g : b);
float delta = max - min;
v = max;
if(max == 0){
s = 0;
h = -1;
}else{
s = delta/max;
if(r == max){
h = (g - b) / delta;
} else if (g == max) {
h = 2 + (b - r) / delta;
} else {
h = 4 + (r - g) / delta;
}
if (h < 0) h += 6;
}
return make_float3(h, s, v);
}
__device__ float3 hsv_to_rgb_kernel(float3 hsv)
{
float h = hsv.x;
float s = hsv.y;
float v = hsv.z;
float r, g, b;
float f, p, q, t;
if (s == 0) {
r = g = b = v;
} else {
int index = (int) floorf(h);
f = h - index;
p = v*(1-s);
q = v*(1-s*f);
t = v*(1-s*(1-f));
if(index == 0){
r = v; g = t; b = p;
} else if(index == 1){
r = q; g = v; b = p;
} else if(index == 2){
r = p; g = v; b = t;
} else if(index == 3){
r = p; g = q; b = v;
} else if(index == 4){
r = t; g = p; b = v;
} else {
r = v; g = p; b = q;
}
}
r = (r < 0) ? 0 : ((r > 1) ? 1 : r);
g = (g < 0) ? 0 : ((g > 1) ? 1 : g);
b = (b < 0) ? 0 : ((b > 1) ? 1 : b);
return make_float3(r, g, b);
}
__device__ float bilinear_interpolate_kernel(float *image, int w, int h, float x, float y, int c)
{
int ix = (int) floorf(x);
int iy = (int) floorf(y);
float dx = x - ix;
float dy = y - iy;
float val = (1-dy) * (1-dx) * get_pixel_kernel(image, w, h, ix, iy, c) +
dy * (1-dx) * get_pixel_kernel(image, w, h, ix, iy+1, c) +
(1-dy) * dx * get_pixel_kernel(image, w, h, ix+1, iy, c) +
dy * dx * get_pixel_kernel(image, w, h, ix+1, iy+1, c);
return val;
}
__global__ void levels_image_kernel(float *image, float *rand, int batch, int w, int h, int train, float saturation, float exposure, float translate, float scale, float shift)
{
int size = batch * w * h;
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(id >= size) return;
int x = id % w;
id /= w;
int y = id % h;
id /= h;
float rshift = rand[0];
float gshift = rand[1];
float bshift = rand[2];
float r0 = rand[8*id + 0];
float r1 = rand[8*id + 1];
float r2 = rand[8*id + 2];
float r3 = rand[8*id + 3];
saturation = r0*(saturation - 1) + 1;
saturation = (r1 > .5f) ? 1.f/saturation : saturation;
exposure = r2*(exposure - 1) + 1;
exposure = (r3 > .5f) ? 1.f/exposure : exposure;
size_t offset = id * h * w * 3;
image += offset;
float r = image[x + w*(y + h*0)];
float g = image[x + w*(y + h*1)];
float b = image[x + w*(y + h*2)];
float3 rgb = make_float3(r,g,b);
if(train){
float3 hsv = rgb_to_hsv_kernel(rgb);
hsv.y *= saturation;
hsv.z *= exposure;
rgb = hsv_to_rgb_kernel(hsv);
} else {
shift = 0;
}
image[x + w*(y + h*0)] = rgb.x*scale + translate + (rshift - .5f)*shift;
image[x + w*(y + h*1)] = rgb.y*scale + translate + (gshift - .5f)*shift;
image[x + w*(y + h*2)] = rgb.z*scale + translate + (bshift - .5f)*shift;
}
__global__ void forward_crop_layer_kernel(float *input, float *rand, int size, int c, int h, int w, int crop_height, int crop_width, int train, int flip, float angle, float *output)
{
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(id >= size) return;
float cx = w/2.f;
float cy = h/2.f;
int count = id;
int j = id % crop_width;
id /= crop_width;
int i = id % crop_height;
id /= crop_height;
int k = id % c;
id /= c;
int b = id;
float r4 = rand[8*b + 4];
float r5 = rand[8*b + 5];
float r6 = rand[8*b + 6];
float r7 = rand[8*b + 7];
float dw = (w - crop_width)*r4;
float dh = (h - crop_height)*r5;
flip = (flip && (r6 > .5f));
angle = 2*angle*r7 - angle;
if(!train){
dw = (w - crop_width)/2.f;
dh = (h - crop_height)/2.f;
flip = 0;
angle = 0;
}
input += w*h*c*b;
float x = (flip) ? w - dw - j - 1 : j + dw;
float y = i + dh;
float rx = cosf(angle)*(x-cx) - sinf(angle)*(y-cy) + cx;
float ry = sinf(angle)*(x-cx) + cosf(angle)*(y-cy) + cy;
output[count] = bilinear_interpolate_kernel(input, w, h, rx, ry, k);
}
extern "C" void forward_crop_layer_gpu(crop_layer layer, network net)
{
cuda_random(layer.rand_gpu, layer.batch*8);
float radians = layer.angle*3.14159265f/180.f;
float scale = 2;
float translate = -1;
if(layer.noadjust){
scale = 1;
translate = 0;
}
int size = layer.batch * layer.w * layer.h;
levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(net.input_gpu, layer.rand_gpu, layer.batch, layer.w, layer.h, net.train, layer.saturation, layer.exposure, translate, scale, layer.shift);
check_error(cudaPeekAtLastError());
size = layer.batch*layer.c*layer.out_w*layer.out_h;
forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(net.input_gpu, layer.rand_gpu, size, layer.c, layer.h, layer.w, layer.out_h, layer.out_w, net.train, layer.flip, radians, layer.output_gpu);
check_error(cudaPeekAtLastError());
/*
cuda_pull_array(layer.output_gpu, layer.output, size);
image im = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 0*(size/layer.batch));
image im2 = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 1*(size/layer.batch));
image im3 = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 2*(size/layer.batch));
translate_image(im, -translate);
scale_image(im, 1/scale);
translate_image(im2, -translate);
scale_image(im2, 1/scale);
translate_image(im3, -translate);
scale_image(im3, 1/scale);
show_image(im, "cropped");
show_image(im2, "cropped2");
show_image(im3, "cropped3");
cvWaitKey(0);
*/
}