Spaces:
Sleeping
Sleeping
File size: 6,669 Bytes
181d94d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
#include "cuda_runtime.h"
#include "curand.h"
#include "cublas_v2.h"
extern "C" {
#include "crop_layer.h"
#include "utils.h"
#include "cuda.h"
#include "image.h"
}
__device__ float get_pixel_kernel(float *image, int w, int h, int x, int y, int c)
{
if(x < 0 || x >= w || y < 0 || y >= h) return 0;
return image[x + w*(y + c*h)];
}
__device__ float3 rgb_to_hsv_kernel(float3 rgb)
{
float r = rgb.x;
float g = rgb.y;
float b = rgb.z;
float h, s, v;
float max = (r > g) ? ( (r > b) ? r : b) : ( (g > b) ? g : b);
float min = (r < g) ? ( (r < b) ? r : b) : ( (g < b) ? g : b);
float delta = max - min;
v = max;
if(max == 0){
s = 0;
h = -1;
}else{
s = delta/max;
if(r == max){
h = (g - b) / delta;
} else if (g == max) {
h = 2 + (b - r) / delta;
} else {
h = 4 + (r - g) / delta;
}
if (h < 0) h += 6;
}
return make_float3(h, s, v);
}
__device__ float3 hsv_to_rgb_kernel(float3 hsv)
{
float h = hsv.x;
float s = hsv.y;
float v = hsv.z;
float r, g, b;
float f, p, q, t;
if (s == 0) {
r = g = b = v;
} else {
int index = (int) floorf(h);
f = h - index;
p = v*(1-s);
q = v*(1-s*f);
t = v*(1-s*(1-f));
if(index == 0){
r = v; g = t; b = p;
} else if(index == 1){
r = q; g = v; b = p;
} else if(index == 2){
r = p; g = v; b = t;
} else if(index == 3){
r = p; g = q; b = v;
} else if(index == 4){
r = t; g = p; b = v;
} else {
r = v; g = p; b = q;
}
}
r = (r < 0) ? 0 : ((r > 1) ? 1 : r);
g = (g < 0) ? 0 : ((g > 1) ? 1 : g);
b = (b < 0) ? 0 : ((b > 1) ? 1 : b);
return make_float3(r, g, b);
}
__device__ float bilinear_interpolate_kernel(float *image, int w, int h, float x, float y, int c)
{
int ix = (int) floorf(x);
int iy = (int) floorf(y);
float dx = x - ix;
float dy = y - iy;
float val = (1-dy) * (1-dx) * get_pixel_kernel(image, w, h, ix, iy, c) +
dy * (1-dx) * get_pixel_kernel(image, w, h, ix, iy+1, c) +
(1-dy) * dx * get_pixel_kernel(image, w, h, ix+1, iy, c) +
dy * dx * get_pixel_kernel(image, w, h, ix+1, iy+1, c);
return val;
}
__global__ void levels_image_kernel(float *image, float *rand, int batch, int w, int h, int train, float saturation, float exposure, float translate, float scale, float shift)
{
int size = batch * w * h;
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(id >= size) return;
int x = id % w;
id /= w;
int y = id % h;
id /= h;
float rshift = rand[0];
float gshift = rand[1];
float bshift = rand[2];
float r0 = rand[8*id + 0];
float r1 = rand[8*id + 1];
float r2 = rand[8*id + 2];
float r3 = rand[8*id + 3];
saturation = r0*(saturation - 1) + 1;
saturation = (r1 > .5f) ? 1.f/saturation : saturation;
exposure = r2*(exposure - 1) + 1;
exposure = (r3 > .5f) ? 1.f/exposure : exposure;
size_t offset = id * h * w * 3;
image += offset;
float r = image[x + w*(y + h*0)];
float g = image[x + w*(y + h*1)];
float b = image[x + w*(y + h*2)];
float3 rgb = make_float3(r,g,b);
if(train){
float3 hsv = rgb_to_hsv_kernel(rgb);
hsv.y *= saturation;
hsv.z *= exposure;
rgb = hsv_to_rgb_kernel(hsv);
} else {
shift = 0;
}
image[x + w*(y + h*0)] = rgb.x*scale + translate + (rshift - .5f)*shift;
image[x + w*(y + h*1)] = rgb.y*scale + translate + (gshift - .5f)*shift;
image[x + w*(y + h*2)] = rgb.z*scale + translate + (bshift - .5f)*shift;
}
__global__ void forward_crop_layer_kernel(float *input, float *rand, int size, int c, int h, int w, int crop_height, int crop_width, int train, int flip, float angle, float *output)
{
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(id >= size) return;
float cx = w/2.f;
float cy = h/2.f;
int count = id;
int j = id % crop_width;
id /= crop_width;
int i = id % crop_height;
id /= crop_height;
int k = id % c;
id /= c;
int b = id;
float r4 = rand[8*b + 4];
float r5 = rand[8*b + 5];
float r6 = rand[8*b + 6];
float r7 = rand[8*b + 7];
float dw = (w - crop_width)*r4;
float dh = (h - crop_height)*r5;
flip = (flip && (r6 > .5f));
angle = 2*angle*r7 - angle;
if(!train){
dw = (w - crop_width)/2.f;
dh = (h - crop_height)/2.f;
flip = 0;
angle = 0;
}
input += w*h*c*b;
float x = (flip) ? w - dw - j - 1 : j + dw;
float y = i + dh;
float rx = cosf(angle)*(x-cx) - sinf(angle)*(y-cy) + cx;
float ry = sinf(angle)*(x-cx) + cosf(angle)*(y-cy) + cy;
output[count] = bilinear_interpolate_kernel(input, w, h, rx, ry, k);
}
extern "C" void forward_crop_layer_gpu(crop_layer layer, network net)
{
cuda_random(layer.rand_gpu, layer.batch*8);
float radians = layer.angle*3.14159265f/180.f;
float scale = 2;
float translate = -1;
if(layer.noadjust){
scale = 1;
translate = 0;
}
int size = layer.batch * layer.w * layer.h;
levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(net.input_gpu, layer.rand_gpu, layer.batch, layer.w, layer.h, net.train, layer.saturation, layer.exposure, translate, scale, layer.shift);
check_error(cudaPeekAtLastError());
size = layer.batch*layer.c*layer.out_w*layer.out_h;
forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(net.input_gpu, layer.rand_gpu, size, layer.c, layer.h, layer.w, layer.out_h, layer.out_w, net.train, layer.flip, radians, layer.output_gpu);
check_error(cudaPeekAtLastError());
/*
cuda_pull_array(layer.output_gpu, layer.output, size);
image im = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 0*(size/layer.batch));
image im2 = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 1*(size/layer.batch));
image im3 = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 2*(size/layer.batch));
translate_image(im, -translate);
scale_image(im, 1/scale);
translate_image(im2, -translate);
scale_image(im2, 1/scale);
translate_image(im3, -translate);
scale_image(im3, 1/scale);
show_image(im, "cropped");
show_image(im2, "cropped2");
show_image(im3, "cropped3");
cvWaitKey(0);
*/
}
|