open-o1 / README.md
tikendraw's picture
readme updated
55d6387
|
raw
history blame
2.57 kB

Open-o1

It thinks like o1

TODO

[ ] Add fallback llms [ ] Better error handling [ ] Add Tools (web, math, code) [ ] Make cli [ ] better prompts for mathematical reasoning/reviewing

What it does

  • It taks the prompt, decides whether to use chain of thought or direct answer, if cot then generates answer and does self review, if direct answer then directly generates answer.
  • Mathematical reasoning, symbolic reasoning and semi-symbolic reasoning kind of tasks generally improves with chain of thought, but direct answer is good for factual recall, simple inferences, commonsense reasoning, language understanding tasks.

Installation

git clone https://github.com/tikendraw/open-o1.git

cd open-o1

streamlit run app.py

HAVE FUN.

Helpful Papers

  1. To Cot or not to Cot? CHAIN-OF-THOUGHT HELPS MAINLY ON MATH AND SYMBOLIC REASONING
@misc{sprague2024cotcotchainofthoughthelps,
      title={To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning}, 
      author={Zayne Sprague and Fangcong Yin and Juan Diego Rodriguez and Dongwei Jiang and Manya Wadhwa and Prasann Singhal and Xinyu Zhao and Xi Ye and Kyle Mahowald and Greg Durrett},
      year={2024},
      eprint={2409.12183},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2409.12183}, 
}
  1. The Impact of Reasoning Step Length on Large Language Models
@misc{jin2024impactreasoningsteplength,
      title={The Impact of Reasoning Step Length on Large Language Models}, 
      author={Mingyu Jin and Qinkai Yu and Dong Shu and Haiyan Zhao and Wenyue Hua and Yanda Meng and Yongfeng Zhang and Mengnan Du},
      year={2024},
      eprint={2401.04925},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2401.04925}, 
}
  1. Towards Understanding Chain-of-Thought Prompting: An Empirical Study of What Matters 2212.10001
@misc{wang2023understandingchainofthoughtpromptingempirical,
      title={Towards Understanding Chain-of-Thought Prompting: An Empirical Study of What Matters}, 
      author={Boshi Wang and Sewon Min and Xiang Deng and Jiaming Shen and You Wu and Luke Zettlemoyer and Huan Sun},
      year={2023},
      eprint={2212.10001},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2212.10001}, 
}

But me a Coffee

"Buy Me A Coffee"