tikendraw's picture
application
a3e82d3
import os
import logging
import tensorflow as tf
from pathlib import Path
from src.utils import configure_logging, load_model_and_vectorizer
from src.data_preprocessing import clean_text
import config
from tensorflow.keras.layers import TextVectorization
# constants
DATA_DIR = Path(os.getcwd()) / 'dataset'
DATA_PATH = DATA_DIR / 'preprocessed_df.csv'
MODEL_PATH = Path(config.MODEL_DIR) / config.MODEL_FILENAME
VECTORIZER_PATH = Path(config.MODEL_DIR) / config.TEXT_VECTOR_FILENAME
COUNTER_PATH = Path(config.MODEL_DIR) / config.COUNTER_NAME
def predict_sentiment(title, text, text_vectorizer, lstm_model):
review = f'{title} {text}' # concatenate the title and text
clean_review = clean_text(review)
review_sequence = text_vectorizer([clean_review])
prediction = lstm_model.predict(review_sequence)
sentiment_score = prediction[0][0]
sentiment_label = 'Positive' if sentiment_score >= 0.5 else 'Negative'
return sentiment_label, sentiment_score
def main():
configure_logging(config.LOG_DIR, "prediction_log.txt", logging.INFO)
text_vectorizer, lstm_model = load_model_and_vectorizer(VECTORIZER_PATH, MODEL_PATH)
if text_vectorizer is None or lstm_model is None:
logging.error('Could not load text vectorizer and model. Aborting prediction.')
return
title = input("Enter the title of the review: ")
text = input("Enter the text of the review: ")
sentiment_label, sentiment_score = predict_sentiment(title, text, text_vectorizer, lstm_model)
logging.debug(f'\nReview title: {title} \nReview text: {text}')
logging.info(f'Review Sentiment: {sentiment_label} (Score: {sentiment_score:.4f})')
if __name__ == "__main__":
main()