Spaces:
Runtime error
Runtime error
import os | |
import logging | |
import tensorflow as tf | |
from pathlib import Path | |
from src.utils import configure_logging, load_model_and_vectorizer | |
from src.data_preprocessing import clean_text | |
import config | |
from tensorflow.keras.layers import TextVectorization | |
# constants | |
DATA_DIR = Path(os.getcwd()) / 'dataset' | |
DATA_PATH = DATA_DIR / 'preprocessed_df.csv' | |
MODEL_PATH = Path(config.MODEL_DIR) / config.MODEL_FILENAME | |
VECTORIZER_PATH = Path(config.MODEL_DIR) / config.TEXT_VECTOR_FILENAME | |
COUNTER_PATH = Path(config.MODEL_DIR) / config.COUNTER_NAME | |
def predict_sentiment(title, text, text_vectorizer, lstm_model): | |
review = f'{title} {text}' # concatenate the title and text | |
clean_review = clean_text(review) | |
review_sequence = text_vectorizer([clean_review]) | |
prediction = lstm_model.predict(review_sequence) | |
sentiment_score = prediction[0][0] | |
sentiment_label = 'Positive' if sentiment_score >= 0.5 else 'Negative' | |
return sentiment_label, sentiment_score | |
def main(): | |
configure_logging(config.LOG_DIR, "prediction_log.txt", logging.INFO) | |
text_vectorizer, lstm_model = load_model_and_vectorizer(VECTORIZER_PATH, MODEL_PATH) | |
if text_vectorizer is None or lstm_model is None: | |
logging.error('Could not load text vectorizer and model. Aborting prediction.') | |
return | |
title = input("Enter the title of the review: ") | |
text = input("Enter the text of the review: ") | |
sentiment_label, sentiment_score = predict_sentiment(title, text, text_vectorizer, lstm_model) | |
logging.debug(f'\nReview title: {title} \nReview text: {text}') | |
logging.info(f'Review Sentiment: {sentiment_label} (Score: {sentiment_score:.4f})') | |
if __name__ == "__main__": | |
main() | |