Spaces:
Runtime error
Runtime error
from threading import Lock | |
import math | |
import os | |
import random | |
from diffusers import StableDiffusionPipeline | |
from diffusers.models.attention import get_global_heat_map, clear_heat_maps | |
from matplotlib import pyplot as plt | |
import gradio as gr | |
import torch | |
import torch.nn.functional as F | |
import spacy | |
if not os.environ.get('NO_DOWNLOAD_SPACY'): | |
spacy.cli.download('en_core_web_sm') | |
model_id = "CompVis/stable-diffusion-v1-4" | |
device = "cuda" | |
gen = torch.Generator(device='cuda') | |
gen.manual_seed(12758672) | |
orig_state = gen.get_state() | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True).to(device) | |
lock = Lock() | |
nlp = spacy.load('en_core_web_sm') | |
def expand_m(m, n: int = 1, o=512, mode='bicubic'): | |
m = m.unsqueeze(0).unsqueeze(0) / n | |
m = F.interpolate(m.float().detach(), size=(o, o), mode='bicubic', align_corners=False) | |
m = (m - m.min()) / (m.max() - m.min() + 1e-8) | |
m = m.cpu().detach() | |
return m | |
def predict(prompt, inf_steps, threshold): | |
global lock | |
with torch.cuda.amp.autocast(), lock: | |
try: | |
plt.close('all') | |
except: | |
pass | |
gen.set_state(orig_state.clone()) | |
clear_heat_maps() | |
out = pipe(prompt, guidance_scale=7.5, height=512, width=512, do_intermediates=False, generator=gen, num_inference_steps=int(inf_steps)) | |
heat_maps = get_global_heat_map() | |
with torch.cuda.amp.autocast(dtype=torch.float32): | |
m = 0 | |
n = 0 | |
w = '' | |
w_idx = 0 | |
fig, ax = plt.subplots() | |
ax.imshow(out.images[0].cpu().float().detach().permute(1, 2, 0).numpy()) | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
fig1, axs1 = plt.subplots(math.ceil(len(out.words) / 4), 4)#, figsize=(20, 20)) | |
fig2, axs2 = plt.subplots(math.ceil(len(out.words) / 4), 4) # , figsize=(20, 20)) | |
for idx in range(len(out.words) + 1): | |
if idx == 0: | |
continue | |
word = out.words[idx - 1] | |
m += heat_maps[idx] | |
n += 1 | |
w += word | |
if '</w>' not in word: | |
continue | |
else: | |
mplot = expand_m(m, n) | |
spotlit_im = out.images[0].cpu().float().detach() | |
w = w.replace('</w>', '') | |
spotlit_im2 = torch.cat((spotlit_im, (1 - mplot.squeeze(0)).pow(1)), dim=0) | |
if len(out.words) <= 4: | |
a1 = axs1[w_idx % 4] | |
a2 = axs2[w_idx % 4] | |
else: | |
a1 = axs1[w_idx // 4, w_idx % 4] | |
a2 = axs2[w_idx // 4, w_idx % 4] | |
a1.set_xticks([]) | |
a1.set_yticks([]) | |
a1.imshow(mplot.squeeze().numpy(), cmap='jet') | |
a1.imshow(spotlit_im2.permute(1, 2, 0).numpy()) | |
a1.set_title(w) | |
mask = torch.ones_like(mplot) | |
mask[mplot < threshold * mplot.max()] = 0 | |
im2 = spotlit_im * mask.squeeze(0) | |
a2.set_xticks([]) | |
a2.set_yticks([]) | |
a2.imshow(im2.permute(1, 2, 0).numpy()) | |
a2.set_title(w) | |
m = 0 | |
n = 0 | |
w_idx += 1 | |
w = '' | |
for idx in range(w_idx, len(axs1.flatten())): | |
fig1.delaxes(axs1.flatten()[idx]) | |
fig2.delaxes(axs2.flatten()[idx]) | |
return fig, fig1, fig2 | |
def set_prompt(prompt): | |
return prompt | |
with gr.Blocks() as demo: | |
md = '''# DAAM: Attention Maps for Interpreting Stable Diffusion | |
Check out the paper: [What the DAAM: Interpreting Stable Diffusion Using Cross Attention](http://arxiv.org/abs/2210.04885). | |
''' | |
gr.Markdown(md) | |
with gr.Row(): | |
with gr.Column(): | |
dropdown = gr.Dropdown([ | |
'An angry, bald man doing research', | |
'Doing research at Comcast Applied AI labs', | |
'Professor Jimmy Lin from the University of Waterloo', | |
'Yann Lecun teaching machine learning on a chalkboard', | |
'A cat eating cake for her birthday', | |
'Steak and dollars on a plate', | |
'A fox, a dog, and a wolf in a field' | |
], label='Examples', value='An angry, bald man doing research') | |
text = gr.Textbox(label='Prompt', value='An angry, bald man doing research') | |
slider1 = gr.Slider(15, 35, value=25, interactive=True, step=1, label='Inference steps') | |
slider2 = gr.Slider(0, 1.0, value=0.4, interactive=True, step=0.05, label='Threshold (tau)') | |
submit_btn = gr.Button('Submit') | |
with gr.Tab('Original Image'): | |
p0 = gr.Plot() | |
with gr.Tab('Soft DAAM Maps'): | |
p1 = gr.Plot() | |
with gr.Tab('Hard DAAM Maps'): | |
p2 = gr.Plot() | |
submit_btn.click(fn=predict, inputs=[text, slider1, slider2], outputs=[p0, p1, p2]) | |
dropdown.change(set_prompt, dropdown, text) | |
dropdown.update() | |
demo.launch()#server_name='0.0.0.0', server_port=8080) | |