Spaces:
Runtime error
Runtime error
Improve efficiency
Browse files
app.py
CHANGED
@@ -1,15 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
5 |
|
6 |
-
|
7 |
-
predictions = pipeline(image)
|
8 |
-
return {p["label"]: p["score"] for p in predictions}
|
9 |
|
10 |
-
gr.Interface(
|
11 |
-
predict,
|
12 |
-
inputs=gr.inputs.Image(label="Upload hot dog candidate", type="filepath"),
|
13 |
-
outputs=gr.outputs.Label(num_top_classes=2),
|
14 |
-
title="Hot Dog? Or Not?",
|
15 |
-
).launch()
|
|
|
1 |
+
from threading import Lock
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
|
6 |
+
from diffusers import StableDiffusionPipeline
|
7 |
+
from diffusers.models.attention import get_global_heat_map, clear_heat_maps
|
8 |
+
from matplotlib import pyplot as plt
|
9 |
import gradio as gr
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import spacy
|
13 |
+
|
14 |
+
|
15 |
+
if not os.environ.get('NO_DOWNLOAD_SPACY'):
|
16 |
+
spacy.cli.download('en_core_web_sm')
|
17 |
+
|
18 |
+
|
19 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
20 |
+
device = "cuda"
|
21 |
+
|
22 |
+
gen = torch.Generator(device='cuda')
|
23 |
+
gen.manual_seed(12758672)
|
24 |
+
orig_state = gen.get_state()
|
25 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True).to(device)
|
26 |
+
lock = Lock()
|
27 |
+
nlp = spacy.load('en_core_web_sm')
|
28 |
+
|
29 |
+
|
30 |
+
def expand_m(m, n: int = 1, o=512, mode='bicubic'):
|
31 |
+
m = m.unsqueeze(0).unsqueeze(0) / n
|
32 |
+
m = F.interpolate(m.float().detach(), size=(o, o), mode='bicubic', align_corners=False)
|
33 |
+
m = (m - m.min()) / (m.max() - m.min() + 1e-8)
|
34 |
+
m = m.cpu().detach()
|
35 |
+
|
36 |
+
return m
|
37 |
+
|
38 |
+
|
39 |
+
@torch.no_grad()
|
40 |
+
def predict(prompt, inf_steps, threshold):
|
41 |
+
global lock
|
42 |
+
with torch.cuda.amp.autocast(), lock:
|
43 |
+
try:
|
44 |
+
plt.close('all')
|
45 |
+
except:
|
46 |
+
pass
|
47 |
+
|
48 |
+
gen.set_state(orig_state.clone())
|
49 |
+
clear_heat_maps()
|
50 |
+
|
51 |
+
out = pipe(prompt, guidance_scale=7.5, height=512, width=512, do_intermediates=False, generator=gen, num_inference_steps=int(inf_steps))
|
52 |
+
heat_maps = get_global_heat_map()
|
53 |
+
|
54 |
+
with torch.cuda.amp.autocast(dtype=torch.float32):
|
55 |
+
m = 0
|
56 |
+
n = 0
|
57 |
+
w = ''
|
58 |
+
w_idx = 0
|
59 |
+
|
60 |
+
fig, ax = plt.subplots()
|
61 |
+
ax.imshow(out.images[0].cpu().float().detach().permute(1, 2, 0).numpy())
|
62 |
+
ax.set_xticks([])
|
63 |
+
ax.set_yticks([])
|
64 |
+
|
65 |
+
fig1, axs1 = plt.subplots(math.ceil(len(out.words) / 4), 4)#, figsize=(20, 20))
|
66 |
+
fig2, axs2 = plt.subplots(math.ceil(len(out.words) / 4), 4) # , figsize=(20, 20))
|
67 |
+
|
68 |
+
for idx in range(len(out.words) + 1):
|
69 |
+
if idx == 0:
|
70 |
+
continue
|
71 |
+
|
72 |
+
word = out.words[idx - 1]
|
73 |
+
m += heat_maps[idx]
|
74 |
+
n += 1
|
75 |
+
w += word
|
76 |
+
|
77 |
+
if '</w>' not in word:
|
78 |
+
continue
|
79 |
+
else:
|
80 |
+
mplot = expand_m(m, n)
|
81 |
+
spotlit_im = out.images[0].cpu().float().detach()
|
82 |
+
w = w.replace('</w>', '')
|
83 |
+
spotlit_im2 = torch.cat((spotlit_im, (1 - mplot.squeeze(0)).pow(1)), dim=0)
|
84 |
+
|
85 |
+
if len(out.words) <= 4:
|
86 |
+
a1 = axs1[w_idx % 4]
|
87 |
+
a2 = axs2[w_idx % 4]
|
88 |
+
else:
|
89 |
+
a1 = axs1[w_idx // 4, w_idx % 4]
|
90 |
+
a2 = axs2[w_idx // 4, w_idx % 4]
|
91 |
+
|
92 |
+
a1.set_xticks([])
|
93 |
+
a1.set_yticks([])
|
94 |
+
a1.imshow(mplot.squeeze().numpy(), cmap='jet')
|
95 |
+
a1.imshow(spotlit_im2.permute(1, 2, 0).numpy())
|
96 |
+
a1.set_title(w)
|
97 |
+
|
98 |
+
mask = torch.ones_like(mplot)
|
99 |
+
mask[mplot < threshold * mplot.max()] = 0
|
100 |
+
im2 = spotlit_im * mask.squeeze(0)
|
101 |
+
a2.set_xticks([])
|
102 |
+
a2.set_yticks([])
|
103 |
+
a2.imshow(im2.permute(1, 2, 0).numpy())
|
104 |
+
a2.set_title(w)
|
105 |
+
m = 0
|
106 |
+
n = 0
|
107 |
+
w_idx += 1
|
108 |
+
w = ''
|
109 |
+
|
110 |
+
for idx in range(w_idx, len(axs1.flatten())):
|
111 |
+
fig1.delaxes(axs1.flatten()[idx])
|
112 |
+
fig2.delaxes(axs2.flatten()[idx])
|
113 |
+
|
114 |
+
return fig, fig1, fig2
|
115 |
+
|
116 |
+
|
117 |
+
def set_prompt(prompt):
|
118 |
+
return prompt
|
119 |
+
|
120 |
+
|
121 |
+
with gr.Blocks() as demo:
|
122 |
+
md = '''# DAAM: Attention Maps for Interpreting Stable Diffusion
|
123 |
+
Check out the paper: [What the DAAM: Interpreting Stable Diffusion Using Cross Attention](http://arxiv.org/abs/2210.04885).
|
124 |
+
'''
|
125 |
+
gr.Markdown(md)
|
126 |
+
|
127 |
+
with gr.Row():
|
128 |
+
with gr.Column():
|
129 |
+
dropdown = gr.Dropdown([
|
130 |
+
'An angry, bald man doing research',
|
131 |
+
'Doing research at Comcast Applied AI labs',
|
132 |
+
'Professor Jimmy Lin from the University of Waterloo',
|
133 |
+
'Yann Lecun teaching machine learning on a chalkboard',
|
134 |
+
'A cat eating cake for her birthday',
|
135 |
+
'Steak and dollars on a plate',
|
136 |
+
'A fox, a dog, and a wolf in a field'
|
137 |
+
], label='Examples', value='An angry, bald man doing research')
|
138 |
+
|
139 |
+
text = gr.Textbox(label='Prompt', value='An angry, bald man doing research')
|
140 |
+
slider1 = gr.Slider(15, 35, value=25, interactive=True, step=1, label='Inference steps')
|
141 |
+
slider2 = gr.Slider(0, 1.0, value=0.4, interactive=True, step=0.05, label='Threshold (tau)')
|
142 |
+
submit_btn = gr.Button('Submit')
|
143 |
+
|
144 |
+
with gr.Tab('Original Image'):
|
145 |
+
p0 = gr.Plot()
|
146 |
+
|
147 |
+
with gr.Tab('Soft DAAM Maps'):
|
148 |
+
p1 = gr.Plot()
|
149 |
+
|
150 |
+
with gr.Tab('Hard DAAM Maps'):
|
151 |
+
p2 = gr.Plot()
|
152 |
+
|
153 |
+
submit_btn.click(fn=predict, inputs=[text, slider1, slider2], outputs=[p0, p1, p2])
|
154 |
+
dropdown.change(set_prompt, dropdown, text)
|
155 |
+
dropdown.update()
|
156 |
|
|
|
157 |
|
158 |
+
demo.launch()#server_name='0.0.0.0', server_port=8080)
|
|
|
|
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
diffusers/models/attention.py
CHANGED
@@ -324,12 +324,12 @@ class CrossAttention(nn.Module):
|
|
324 |
for map_ in x:
|
325 |
map_ = map_.unsqueeze(1).view(map_.size(0), 1, h, w)
|
326 |
if method == 'bicubic':
|
327 |
-
map_ = F.interpolate(map_, size=(
|
328 |
maps.append(map_.squeeze(1))
|
329 |
else:
|
330 |
maps.append(F.conv_transpose2d(map_, weight, stride=factor).squeeze(1).cpu())
|
331 |
|
332 |
-
maps = torch.stack(maps, 0).cpu()
|
333 |
return maps
|
334 |
|
335 |
def _attention(self, query, key, value, sequence_length, dim, use_context: bool = True):
|
@@ -347,7 +347,7 @@ class CrossAttention(nn.Module):
|
|
347 |
factor = int(math.sqrt(4096 // attn_slice.shape[1]))
|
348 |
attn_slice = attn_slice.softmax(-1)
|
349 |
|
350 |
-
if use_context:
|
351 |
if factor >= 1:
|
352 |
factor //= 1
|
353 |
maps = self._up_sample_attn(attn_slice, factor)
|
|
|
324 |
for map_ in x:
|
325 |
map_ = map_.unsqueeze(1).view(map_.size(0), 1, h, w)
|
326 |
if method == 'bicubic':
|
327 |
+
map_ = F.interpolate(map_, size=(64, 64), mode="bicubic", align_corners=False)
|
328 |
maps.append(map_.squeeze(1))
|
329 |
else:
|
330 |
maps.append(F.conv_transpose2d(map_, weight, stride=factor).squeeze(1).cpu())
|
331 |
|
332 |
+
maps = torch.stack(maps, 0).sum(1, keepdim=True).cpu()
|
333 |
return maps
|
334 |
|
335 |
def _attention(self, query, key, value, sequence_length, dim, use_context: bool = True):
|
|
|
347 |
factor = int(math.sqrt(4096 // attn_slice.shape[1]))
|
348 |
attn_slice = attn_slice.softmax(-1)
|
349 |
|
350 |
+
if use_context and attn_slice.shape[-1] == 77:
|
351 |
if factor >= 1:
|
352 |
factor //= 1
|
353 |
maps = self._up_sample_attn(attn_slice, factor)
|
diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
CHANGED
@@ -346,4 +346,8 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
346 |
if not return_dict:
|
347 |
return (image, has_nsfw_concept)
|
348 |
|
|
|
|
|
|
|
|
|
349 |
return StableDiffusionPipelineOutput(images=gpu_image, pil_images=image, nsfw_content_detected=has_nsfw_concept, text_embeddings=text_embeddings, words=words, intermediates=inters)
|
|
|
346 |
if not return_dict:
|
347 |
return (image, has_nsfw_concept)
|
348 |
|
349 |
+
if any(has_nsfw_concept):
|
350 |
+
gpu_image.zero_()
|
351 |
+
image[0] = None
|
352 |
+
|
353 |
return StableDiffusionPipelineOutput(images=gpu_image, pil_images=image, nsfw_content_detected=has_nsfw_concept, text_embeddings=text_embeddings, words=words, intermediates=inters)
|
diffusers/pipelines/stable_diffusion/safety_checker.py
CHANGED
@@ -72,6 +72,7 @@ class StableDiffusionSafetyChecker(PreTrainedModel):
|
|
72 |
images[idx] = np.zeros(images[idx].shape) # black image
|
73 |
|
74 |
if any(has_nsfw_concepts):
|
|
|
75 |
logger.warning(
|
76 |
"Potential NSFW content was detected in one or more images. A black image will be returned instead."
|
77 |
" Try again with a different prompt and/or seed."
|
|
|
72 |
images[idx] = np.zeros(images[idx].shape) # black image
|
73 |
|
74 |
if any(has_nsfw_concepts):
|
75 |
+
images = []
|
76 |
logger.warning(
|
77 |
"Potential NSFW content was detected in one or more images. A black image will be returned instead."
|
78 |
" Try again with a different prompt and/or seed."
|
requirements.txt
CHANGED
@@ -24,3 +24,6 @@ tensorboard
|
|
24 |
torch>=1.4
|
25 |
torchvision
|
26 |
transformers>=4.21.0
|
|
|
|
|
|
|
|
24 |
torch>=1.4
|
25 |
torchvision
|
26 |
transformers>=4.21.0
|
27 |
+
spacy
|
28 |
+
gradio
|
29 |
+
ftfy
|