TinyStories / doc /train_llama_tokenizer.md
teragron's picture
Upload 21 files
233119d

A newer version of the Gradio SDK is available: 5.13.0

Upgrade

training llama tokenizer

How does Meta train their sentencepiece tokenizer? You can print the config as follows:

import sentencepiece.sentencepiece_model_pb2
mp = sentencepiece.sentencepiece_model_pb2.ModelProto()
mp.ParseFromString(open("tokenizer.model", "rb").read())
print(mp.trainer_spec)
print(mp.normalizer_spec)

this gives:

trainer_spec {
  input: "/large_experiments/theorem/datasets/MERGED/all.test1.merged"
  model_prefix: "spm_model_32k_200M_charcov099995_allowWSO__v2"
  model_type: BPE
  vocab_size: 32000
  self_test_sample_size: 0
  input_format: "text"
  character_coverage: 0.9999499917030334
  input_sentence_size: 200000000
  seed_sentencepiece_size: 1000000
  shrinking_factor: 0.75
  num_threads: 80
  num_sub_iterations: 2
  max_sentence_length: 4192
  shuffle_input_sentence: true
  max_sentencepiece_length: 16
  split_by_unicode_script: true
  split_by_whitespace: true
  split_by_number: true
  treat_whitespace_as_suffix: false
  split_digits: true
  allow_whitespace_only_pieces: true
  vocabulary_output_piece_score: true
  hard_vocab_limit: true
  use_all_vocab: false
  byte_fallback: true
  required_chars: ""
  unk_id: 0
  bos_id: 1
  eos_id: 2
  pad_id: -1
  unk_surface: " \342\201\207 "
  unk_piece: "<unk>"
  bos_piece: "<s>"
  eos_piece: "</s>"
  pad_piece: "<pad>"
  train_extremely_large_corpus: false
  enable_differential_privacy: false
  differential_privacy_noise_level: 0.0
  differential_privacy_clipping_threshold: 0
}
normalizer_spec {
  name: "identity"
  precompiled_charsmap: ""
  add_dummy_prefix: true
  remove_extra_whitespaces: false
  normalization_rule_tsv: ""
}

We can use the sentencepiece spm_train to train the same models, but optionally smaller. Here are their options docs we can refer to. It's not much but it helps.

We'll depart on one setting, I recommend changing character_coverage -> 1.0. We also want to make sure to note the following important settings that come up in the paper and are not necessarily the default sentencepiece settings:

--split-digits = true
--allow_whitespace_only_pieces = true
--byte_fallback = true
--normalization_rule_name = identity

With this in mind we can train a sentencepiece vocab in what I believe is probably the same to how Meta trained theirs as:

spm_train --input="$input" \
          --model_prefix="$model_prefix" \
          --model_type=bpe \
          --vocab_size="$vocab_size" \
          --self_test_sample_size=0 \
          --input_format="text" \
          --character_coverage=1.0 \
          --num_threads="$(nproc)" \
          --split_digits=true \
          --allow_whitespace_only_pieces=true \
          --byte_fallback=true \
          --unk_surface=" \342\201\207 " \
          --normalization_rule_name=identity \

Where $input is the input file, $model_prefix is the output path prefix, vocab_size is the desired vocab, and we're by default taking over the CPU resources of the machine.

Lastly note that sentencepiece is weird and expects "sentences" delimited by newlines as the input. You can't just put in a massive block of text. And they have a hyperparameter that constols the maximum size of a "sentence". Fwiw I really dislike this design choice around a weird concept of a "sentence". It should just be block of text with no assumptions. But here we are.

Look into the file tinystories.py where we train the vocab in the same way, but using Python bindings instead.