|
|
|
|
|
|
|
import gradio as gr |
|
import transformers |
|
|
|
|
|
model_name = "Artigenz/Artigenz-Coder-DS-6.7B" |
|
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) |
|
model = transformers.AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto") |
|
max_new_tokens:int=1024 |
|
do_sample:bool=True |
|
num_beams:int=1 |
|
temperature:float=0.5 |
|
top_p:float=0.95 |
|
top_k:float=40 |
|
repetition_penalty:float=1.1 |
|
pipe = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
num_beams=num_beams, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
|
|
def generate_response(input_text): |
|
messages = [ |
|
{ |
|
"role": "system", "content": "You are a helpful coding chatbot. You will answer the user's questions to the best of your ability.", |
|
"role": "user", "content": input_text, |
|
}, |
|
] |
|
return pipe(messages)[0]['generated_text'][-1]['content'].replace("\\n", "\n") |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_response, |
|
inputs="text", |
|
outputs="text", |
|
title="Artigenz Coder - 6.7B Model", |
|
description="A code-generation model from Artigenz. Enter a prompt to get code suggestions or completions." |
|
) |
|
|
|
|
|
iface.launch() |
|
|