File size: 1,562 Bytes
26b9c2e
 
 
e7bae5d
26b9c2e
 
 
 
 
67158a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b9c2e
 
67158a0
 
 
 
 
 
 
26b9c2e
 
 
 
 
 
 
 
 
e7bae5d
26b9c2e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# import gradio as gr

# gr.load("models/Artigenz/Artigenz-Coder-DS-6.7B").launch()
import gradio as gr
import transformers

# Load the model and tokenizer
model_name = "Artigenz/Artigenz-Coder-DS-6.7B"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = transformers.AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")
max_new_tokens:int=1024
do_sample:bool=True
num_beams:int=1
temperature:float=0.5
top_p:float=0.95
top_k:float=40
repetition_penalty:float=1.1
pipe = transformers.pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        max_new_tokens=max_new_tokens,
        do_sample=do_sample,
        num_beams=num_beams,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
    )

def generate_response(input_text):
    messages = [
                {
                    "role": "system", "content": "You are a helpful coding chatbot. You will answer the user's questions to the best of your ability.",
                    "role": "user", "content": input_text,
                },
        ]
    return pipe(messages)[0]['generated_text'][-1]['content'].replace("\\n", "\n")

# Define the Gradio interface
iface = gr.Interface(
    fn=generate_response, 
    inputs="text", 
    outputs="text",
    title="Artigenz Coder - 6.7B Model",
    description="A code-generation model from Artigenz. Enter a prompt to get code suggestions or completions."
)

# Launch the interface
iface.launch()