Sexismdetection / app.py
robertou2's picture
Update app.py
59d2e3e
import tweepy as tw
import streamlit as st
import pandas as pd
import torch
import numpy as np
import re
from pysentimiento.preprocessing import preprocess_tweet
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021')
model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
import torch
if torch.cuda.is_available():
device = torch.device("cuda")
print('I will use the GPU:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
consumer_key = st.secrets["consumer_key"]
consumer_secret = st.secrets["consumer_secret"]
access_token = st.secrets["access_token"]
access_token_secret = st.secrets["access_token_secret"]
auth = tw.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tw.API(auth, wait_on_rate_limit=True)
def preprocess(text):
text=text.lower()
# remove hyperlinks
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
text = re.sub(r'http?:\/\/.*[\r\n]*', '', text)
#Replace &amp, &lt, &gt with &,<,> respectively
text=text.replace(r'&amp;?',r'and')
text=text.replace(r'&lt;',r'<')
text=text.replace(r'&gt;',r'>')
#remove hashtag sign
#text=re.sub(r"#","",text)
#remove mentions
text = re.sub(r"(?:\@)\w+", '', text)
#text=re.sub(r"@","",text)
#remove non ascii chars
text=text.encode("ascii",errors="ignore").decode()
#remove some puncts (except . ! ?)
text=re.sub(r'[:"#$%&\*+,-/:;<=>@\\^_`{|}~]+','',text)
text=re.sub(r'[!]+','!',text)
text=re.sub(r'[?]+','?',text)
text=re.sub(r'[.]+','.',text)
text=re.sub(r"'","",text)
text=re.sub(r"\(","",text)
text=re.sub(r"\)","",text)
text=" ".join(text.split())
return text
def highlight_survived(s):
return ['background-color: red']*len(s) if (s.Sexista == 1) else ['background-color: green']*len(s)
def color_survived(val):
color = 'red' if val=='Sexista' else 'white'
return f'background-color: {color}'
st.set_page_config(layout="wide")
st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)
#background-color: Blue;
colT1,colT2 = st.columns([2,8])
with colT2:
#st.title('Analisis de comentarios sexistas en Twitter')
st.markdown(""" <style> .font {
font-size:40px ; font-family: 'Cooper Black'; color: #FF9633;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font">Análisis de comentarios sexistas en Twitter</p>', unsafe_allow_html=True)
st.markdown(""" <style> .font1 {
font-size:28px ; font-family: 'Times New Roman'; color: #8d33ff;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font1">Objetivo 5 de los ODS. Lograr la igualdad entre los géneros y empoderar a todas las mujeres y las niñas</p>', unsafe_allow_html=True)
#st.header('Objetivo 5 de los ODS, Lograr la igualdad entre los géneros y empoderar a todas las mujeres y las niñas')
with colT1:
st.image("https://upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Sustainable_Development_Goal-es-13.jpg/1200px-Sustainable_Development_Goal-es-13.jpg",width=200)
st.markdown(""" <style> .font2 {
font-size:16px ; font-family: 'Times New Roman'; color: #3358ff;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font2">Esta app utiliza tweepy para descargar tweets de twitter en base a la información de entrada y procesa los tweets usando transformers de HuggingFace para detectar comentarios sexistas. El resultado y los tweets correspondientes se almacenan en un dataframe para mostrarlo que es lo que se ve como resultado.La finalidad del proyecto es, en línea con el Objetivo 5 de los ODS, eliminar todas las formas de violencia contra todas las mujeres y las niñas en los ámbitos público y privado, incluidas la trata y la explotación sexual y otros tipos de explotación. Los comentarios sexistas son una forma de violencia contra la mujer. Está aplicación puede ayudar a hacer un estudio sistemático de la misma.</p>',unsafe_allow_html=True)
def run():
with st.form(key='Introduzca Texto'):
col,buff1, buff2 = st.columns([2,2,1])
#col.text_input('smaller text window:')
search_words = col.text_input("Introduzca el termino o usuario para analizar y pulse el check correspondiente")
number_of_tweets = col.number_input('Introduzca número de twweets a analizar. Máximo 50', 0,50,10)
termino=st.checkbox('Término')
usuario=st.checkbox('Usuario')
submit_button = col.form_submit_button(label='Analizar')
error=False
if submit_button:
date_since = "2020-09-14"
if ( termino == False and usuario == False):
st.text('Error no se ha seleccionado ningun check')
error=True
elif ( termino == True and usuario == True):
st.text('Error se han seleccionado los dos check')
error=True
if (error == False):
if (termino):
new_search = search_words + " -filter:retweets"
tweets =tw.Cursor(api.search_tweets,q=new_search,lang="es",since=date_since).items(number_of_tweets)
elif (usuario):
tweets = api.user_timeline(screen_name = search_words,count=number_of_tweets)
tweet_list = [i.text for i in tweets]
#tweet_list = [strip_undesired_chars(i.text) for i in tweets]
text= pd.DataFrame(tweet_list)
#text[0] = text[0].apply(preprocess)
text[0] = text[0].apply(preprocess_tweet)
text1=text[0].values
indices1=tokenizer.batch_encode_plus(text1.tolist(),
max_length=128,
add_special_tokens=True,
return_attention_mask=True,
pad_to_max_length=True,
truncation=True)
input_ids1=indices1["input_ids"]
attention_masks1=indices1["attention_mask"]
prediction_inputs1= torch.tensor(input_ids1)
prediction_masks1 = torch.tensor(attention_masks1)
# Set the batch size.
batch_size = 25
# Create the DataLoader.
prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
prediction_sampler1 = SequentialSampler(prediction_data1)
prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
# Put model in evaluation mode
model.eval()
# Tracking variables
predictions = []
# Predict
for batch in prediction_dataloader1:
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids1, b_input_mask1 = batch
# Telling the model not to compute or store gradients, saving memory and # speeding up prediction
with torch.no_grad():
# Forward pass, calculate logit predictions
outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
logits1 = outputs1[0]
# Move logits and labels to CPU
logits1 = logits1.detach().cpu().numpy()
# Store predictions and true labels
predictions.append(logits1)
flat_predictions = [item for sublist in predictions for item in sublist]
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()#p = [i for i in classifier(tweet_list)]
df = pd.DataFrame(list(zip(tweet_list, flat_predictions)),columns =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words, 'Sexista'])
df['Sexista']= np.where(df['Sexista']== 0, 'No Sexista', 'Sexista')
st.table(df.reset_index(drop=True).head(20).style.applymap(color_survived, subset=['Sexista']))
#st.dataframe(df.style.apply(highlight_survived, axis=1))
#st.table(df)
#st.write(df)
run()