File size: 8,925 Bytes
2f4222d
40b93ed
 
9298aaa
 
 
59d2e3e
77b96fb
868cb73
9298aaa
 
77b96fb
 
9298aaa
 
 
 
 
 
 
 
 
40b93ed
abd4b63
 
 
 
40b93ed
 
 
 
45be029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
868cb73
 
 
 
 
 
 
9298aaa
9fbd666
868cb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9052d2e
197bf1d
40b93ed
 
45be029
27f252a
e27ea1b
868cb73
e27ea1b
45be029
 
e27ea1b
54e1678
40b93ed
45be029
54e1678
 
 
 
 
 
 
 
 
e9ba58b
 
 
 
 
 
54e1678
 
 
77b96fb
 
54e1678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
868cb73
54e1678
868cb73
 
 
 
 
 
 
8727080
40b93ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import tweepy as tw
import streamlit as st
import pandas as pd
import torch
import numpy as np
import re

from pysentimiento.preprocessing import preprocess_tweet

from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021')
model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")

import torch
if torch.cuda.is_available():  
    device = torch.device("cuda")
    print('I will use the GPU:', torch.cuda.get_device_name(0))
    
else:
    print('No GPU available, using the CPU instead.')
    device = torch.device("cpu")

consumer_key = st.secrets["consumer_key"]
consumer_secret = st.secrets["consumer_secret"]
access_token = st.secrets["access_token"]
access_token_secret = st.secrets["access_token_secret"]
auth = tw.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tw.API(auth, wait_on_rate_limit=True)

def preprocess(text):
    text=text.lower()
    # remove hyperlinks
    text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
    text = re.sub(r'http?:\/\/.*[\r\n]*', '', text)
    #Replace &amp, &lt, &gt with &,<,> respectively
    text=text.replace(r'&amp;?',r'and')
    text=text.replace(r'&lt;',r'<')
    text=text.replace(r'&gt;',r'>')
    #remove hashtag sign
    #text=re.sub(r"#","",text)   
    #remove mentions
    text = re.sub(r"(?:\@)\w+", '', text)
    #text=re.sub(r"@","",text)
    #remove non ascii chars
    text=text.encode("ascii",errors="ignore").decode()
    #remove some puncts (except . ! ?)
    text=re.sub(r'[:"#$%&\*+,-/:;<=>@\\^_`{|}~]+','',text)
    text=re.sub(r'[!]+','!',text)
    text=re.sub(r'[?]+','?',text)
    text=re.sub(r'[.]+','.',text)
    text=re.sub(r"'","",text)
    text=re.sub(r"\(","",text)
    text=re.sub(r"\)","",text)
    text=" ".join(text.split())
    return text
    
def highlight_survived(s):
    return ['background-color: red']*len(s) if (s.Sexista == 1) else ['background-color: green']*len(s)

def color_survived(val):
    color = 'red' if val=='Sexista' else 'white'
    return f'background-color: {color}'                

st.set_page_config(layout="wide")
st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)

#background-color: Blue;

colT1,colT2 = st.columns([2,8])
with colT2:
    #st.title('Analisis de comentarios sexistas en Twitter') 
    st.markdown(""" <style> .font {
    font-size:40px ; font-family: 'Cooper Black'; color: #FF9633;} 
    </style> """, unsafe_allow_html=True)
    st.markdown('<p class="font">Análisis de comentarios sexistas en Twitter</p>', unsafe_allow_html=True)
    
    st.markdown(""" <style> .font1 {
    font-size:28px ; font-family: 'Times New Roman'; color: #8d33ff;} 
    </style> """, unsafe_allow_html=True)
    st.markdown('<p class="font1">Objetivo 5 de los ODS. Lograr la igualdad entre los géneros y empoderar a todas las mujeres y las niñas</p>', unsafe_allow_html=True)
    #st.header('Objetivo 5 de los ODS, Lograr la igualdad entre los géneros y empoderar a todas las mujeres y las niñas')
with colT1:
    st.image("https://upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Sustainable_Development_Goal-es-13.jpg/1200px-Sustainable_Development_Goal-es-13.jpg",width=200)

st.markdown(""" <style> .font2 {
    font-size:16px ; font-family: 'Times New Roman'; color: #3358ff;} 
    </style> """, unsafe_allow_html=True)
st.markdown('<p class="font2">Esta app utiliza tweepy para descargar tweets de twitter en base a la información de entrada y procesa los tweets usando transformers de HuggingFace para detectar comentarios sexistas. El resultado y los tweets correspondientes se almacenan en un dataframe para mostrarlo que es lo que se ve como resultado.La finalidad del proyecto es, en línea con el Objetivo 5 de los ODS, eliminar todas las formas de violencia contra todas las mujeres y las niñas en los ámbitos público y privado, incluidas la trata y la explotación sexual y otros tipos de explotación. Los comentarios sexistas son una forma de violencia contra la mujer. Está aplicación puede ayudar a hacer un estudio sistemático de la misma.</p>',unsafe_allow_html=True)


def run():
    with st.form(key='Introduzca Texto'):
        col,buff1, buff2 = st.columns([2,2,1])
        #col.text_input('smaller text window:')
        search_words = col.text_input("Introduzca el termino o usuario para analizar y pulse el check correspondiente")
        number_of_tweets = col.number_input('Introduzca número de twweets a analizar. Máximo 50', 0,50,10)
        termino=st.checkbox('Término')
        usuario=st.checkbox('Usuario')
        submit_button = col.form_submit_button(label='Analizar')
        error=False
        if submit_button:
            date_since = "2020-09-14"
            if ( termino == False and usuario == False):
                st.text('Error no se ha seleccionado ningun check')
                error=True
            elif ( termino == True and usuario == True):
                st.text('Error se han seleccionado los dos check')
                error=True
            
           
            if (error == False):
                if (termino):
                    new_search = search_words + " -filter:retweets"
                    tweets =tw.Cursor(api.search_tweets,q=new_search,lang="es",since=date_since).items(number_of_tweets)
                elif (usuario):
                    tweets = api.user_timeline(screen_name = search_words,count=number_of_tweets)
                
                tweet_list = [i.text for i in tweets]
                #tweet_list = [strip_undesired_chars(i.text) for i in tweets]
                text= pd.DataFrame(tweet_list)
                #text[0] = text[0].apply(preprocess)
                text[0] = text[0].apply(preprocess_tweet)
                text1=text[0].values
                indices1=tokenizer.batch_encode_plus(text1.tolist(),
                                         max_length=128,
                                         add_special_tokens=True, 
                                         return_attention_mask=True,
                                         pad_to_max_length=True,
                                         truncation=True)
                input_ids1=indices1["input_ids"]
                attention_masks1=indices1["attention_mask"]
                prediction_inputs1= torch.tensor(input_ids1)
                prediction_masks1 = torch.tensor(attention_masks1)
                # Set the batch size.  
                batch_size = 25
                # Create the DataLoader.
                prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
                prediction_sampler1 = SequentialSampler(prediction_data1)
                prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
                print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
                # Put model in evaluation mode
                model.eval()
                # Tracking variables 
                predictions = []
                # Predict 
                for batch in prediction_dataloader1:
                    batch = tuple(t.to(device) for t in batch)
                    # Unpack the inputs from our dataloader
                    b_input_ids1, b_input_mask1 = batch
                    # Telling the model not to compute or store gradients, saving memory and   # speeding up prediction
                    with torch.no_grad():
                        # Forward pass, calculate logit predictions
                        outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
                    logits1 = outputs1[0]
                    # Move logits and labels to CPU
                    logits1 = logits1.detach().cpu().numpy()
                    # Store predictions and true labels
                    predictions.append(logits1)
                flat_predictions = [item for sublist in predictions for item in sublist]
                flat_predictions = np.argmax(flat_predictions, axis=1).flatten()#p = [i for i in classifier(tweet_list)]
                df = pd.DataFrame(list(zip(tweet_list, flat_predictions)),columns =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words, 'Sexista'])
                df['Sexista']= np.where(df['Sexista']== 0, 'No Sexista', 'Sexista')
                
                
                st.table(df.reset_index(drop=True).head(20).style.applymap(color_survived, subset=['Sexista']))

                
                #st.dataframe(df.style.apply(highlight_survived, axis=1))
                #st.table(df)
            #st.write(df)
run()