File size: 13,225 Bytes
664416c ab76bab 664416c ab76bab 664416c ab76bab 664416c ab76bab 42a6f9c ab76bab 42a6f9c ab76bab 42a6f9c ab76bab 42a6f9c ab76bab 42a6f9c 94f782b 664416c a6073db f370751 a6073db 664416c 741f250 664416c 3a99aac 664416c 3a99aac 664416c 741f250 664416c 741f250 664416c b09d195 664416c 3a99aac 664416c 94f782b 664416c 741f250 664416c 741f250 664416c 741f250 664416c 741f250 664416c 741f250 664416c 94f782b 664416c 8b5c523 ab76bab 94f782b ab76bab 94f782b 664416c 94f782b 664416c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import subprocess
import gradio as gr
import zipfile
import os
import shutil
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download, Repository, HfFolder
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.submission.evaluate import calculate_metrics
import json
def handle_new_eval_submission(model_name, model_zip, model_link=None) -> str:
try:
# Input validation
if not model_name:
return "Please enter a model name."
if not isinstance(model_name, str):
return "Model name must be a string."
if len(model_name.split()) > 1:
return "Model name should be a single word with hyphens."
# Check if the model name is already in the leaderboard
if model_name in leaderboard_df[AutoEvalColumn.model.name].values:
return "Model name already exists in the leaderboard. Please choose a different name."
if model_zip is None:
return "Please provide a zip file."
extraction_path = os.path.join(EVAL_RESULTS_PATH_BACKEND, model_name)
if model_zip is not None:
# Check if the zip file is actually a zip file
if not zipfile.is_zipfile(model_zip):
return "Please upload a valid zip file."
# Create extraction path if it doesn't exist
os.makedirs(extraction_path, exist_ok=True)
# Extract the zip file
try:
with zipfile.ZipFile(model_zip, 'r') as zip_ref:
zip_ref.extractall(extraction_path)
except zipfile.BadZipFile:
return "The uploaded file is not a valid zip file."
except Exception as e:
return f"An error occurred while extracting the zip file: {str(e)}"
print("File unzipped successfully to:", extraction_path)
# Evaluate the model's performance
try:
calculate_metrics(extraction_path, model_name)
except Exception as e:
return f"An error occurred while calculating metrics: {str(e)}"
# Upload results to repo
results_file_path = os.path.join(os.getcwd(), EVAL_RESULTS_PATH, '3d-pope', model_name, 'results.json')
if not os.path.exists(results_file_path):
return f"Results file not found at {results_file_path}"
try:
with open(results_file_path, 'r') as f:
json.load(f) # Validate JSON structure
except json.JSONDecodeError:
return "The results file is not a valid JSON file."
try:
API.upload_file(
path_or_fileobj=results_file_path,
path_in_repo=os.path.join('3d-pope', model_name, 'results.json'),
repo_id=RESULTS_REPO,
repo_type="dataset",
)
except Exception as e:
return f"An error occurred while uploading results: {str(e)}"
# Restart the space
try:
restart_space()
except Exception as e:
return f"An error occurred while restarting the space: {str(e)}"
return "Submission received and results are being processed. Please check the leaderboard for updates."
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
def restart_space():
API.restart_space(repo_id=REPO_ID)
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()
def custom_format(x):
if pd.isna(x):
return x # Return as is if NaN
try:
float_x = float(x)
if float_x.is_integer():
return f"{int(float_x)}"
else:
return f"{float_x:.2f}".rstrip('0').rstrip('.')
except ValueError:
return x # Return as is if conversion to float fails
numeric_cols = [col for col in leaderboard_df.columns if leaderboard_df[col].dtype in ['float64', 'float32']]
leaderboard_df[numeric_cols] = leaderboard_df[numeric_cols].applymap(custom_format)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
# type_query: list,
# precision_query: str,
# size_query: list,
# show_deleted: bool,
query: str,
):
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
filtered_df = filter_queries(query, hidden_df)
df = select_columns(filtered_df, columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
# AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
existing_columns = [col for col in [AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] if col in filtered_df.columns]
filtered_df = filtered_df.drop_duplicates(subset=existing_columns)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
# if show_deleted:
# filtered_df = df
# else: # Show only still on the hub models
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
filtered_df = df
type_emoji = [t[0] for t in type_query]
# filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
# filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
3D-POPE Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
# with gr.Row():
# deleted_models_visibility = gr.Checkbox(
# value=False, label="Show gated/private/deleted models", interactive=True
# )
# with gr.Column(min_width=320):
#with gr.Box(elem_id="box-filter"):
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
# deleted_models_visibility,
search_bar,
],
leaderboard_table,
)
for selector in [shown_columns]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
# deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# π Submit your results here!", elem_classes="markdown-text")
with gr.Row():
model_name_textbox = gr.Textbox(label="Model name")
model_zip_file = gr.File(label="Upload model prediction result ZIP file")
# model_link_textbox = gr.Textbox(label="Link to model page")
with gr.Row():
gr.Column()
with gr.Column(scale=2):
submit_button = gr.Button("Submit Model")
submission_result = gr.Markdown()
submit_button.click(
handle_new_eval_submission,
[model_name_textbox, model_zip_file],
submission_result
)
gr.Column()
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |