File size: 13,225 Bytes
664416c
 
ab76bab
 
 
664416c
 
ab76bab
664416c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab76bab
664416c
 
ab76bab
42a6f9c
ab76bab
42a6f9c
 
 
 
 
ab76bab
42a6f9c
 
ab76bab
42a6f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab76bab
42a6f9c
 
94f782b
664416c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6073db
 
 
 
 
 
 
 
 
 
 
 
 
f370751
a6073db
664416c
 
 
 
 
 
 
 
 
 
 
 
741f250
 
 
 
664416c
 
3a99aac
 
664416c
 
 
 
 
 
 
 
 
 
3a99aac
664416c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741f250
 
664416c
 
 
 
741f250
664416c
 
 
 
b09d195
 
 
 
 
 
664416c
 
3a99aac
 
664416c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f782b
664416c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741f250
 
 
 
 
664416c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741f250
664416c
 
 
 
741f250
 
664416c
 
 
 
 
741f250
664416c
 
 
 
 
 
741f250
664416c
 
 
 
 
 
 
 
94f782b
664416c
 
 
8b5c523
ab76bab
94f782b
 
 
 
 
 
 
 
ab76bab
94f782b
664416c
94f782b
664416c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import subprocess
import gradio as gr
import zipfile
import os
import shutil
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download, Repository, HfFolder

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.submission.evaluate import calculate_metrics
import json

def handle_new_eval_submission(model_name, model_zip, model_link=None) -> str:
    try:
        # Input validation
        if not model_name:
            return "Please enter a model name."
        
        if not isinstance(model_name, str):
            return "Model name must be a string."
        
        if len(model_name.split()) > 1:
            return "Model name should be a single word with hyphens."
        
        # Check if the model name is already in the leaderboard
        if model_name in leaderboard_df[AutoEvalColumn.model.name].values:
            return "Model name already exists in the leaderboard. Please choose a different name."
        
        if model_zip is None:
            return "Please provide a zip file."
        
        extraction_path = os.path.join(EVAL_RESULTS_PATH_BACKEND, model_name)
        
        if model_zip is not None:
            # Check if the zip file is actually a zip file
            if not zipfile.is_zipfile(model_zip):
                return "Please upload a valid zip file."
            
            # Create extraction path if it doesn't exist
            os.makedirs(extraction_path, exist_ok=True)
            
            # Extract the zip file
            try:
                with zipfile.ZipFile(model_zip, 'r') as zip_ref:
                    zip_ref.extractall(extraction_path)
            except zipfile.BadZipFile:
                return "The uploaded file is not a valid zip file."
            except Exception as e:
                return f"An error occurred while extracting the zip file: {str(e)}"
            
            print("File unzipped successfully to:", extraction_path)
        
        # Evaluate the model's performance
        try:
            calculate_metrics(extraction_path, model_name)
        except Exception as e:
            return f"An error occurred while calculating metrics: {str(e)}"
        
        # Upload results to repo
        results_file_path = os.path.join(os.getcwd(), EVAL_RESULTS_PATH, '3d-pope', model_name, 'results.json')
        if not os.path.exists(results_file_path):
            return f"Results file not found at {results_file_path}"
        
        try:
            with open(results_file_path, 'r') as f:
                json.load(f)  # Validate JSON structure
        except json.JSONDecodeError:
            return "The results file is not a valid JSON file."
        
        try:
            API.upload_file(
                path_or_fileobj=results_file_path,
                path_in_repo=os.path.join('3d-pope', model_name, 'results.json'),
                repo_id=RESULTS_REPO,
                repo_type="dataset",
            )
        except Exception as e:
            return f"An error occurred while uploading results: {str(e)}"
        
        # Restart the space
        try:
            restart_space()
        except Exception as e:
            return f"An error occurred while restarting the space: {str(e)}"
        
        return "Submission received and results are being processed. Please check the leaderboard for updates."
    
    except Exception as e:
        return f"An unexpected error occurred: {str(e)}"


def restart_space():
    API.restart_space(repo_id=REPO_ID)

try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()

def custom_format(x):
    if pd.isna(x):
        return x  # Return as is if NaN
    try:
        float_x = float(x)
        if float_x.is_integer():
            return f"{int(float_x)}"
        else:
            return f"{float_x:.2f}".rstrip('0').rstrip('.')
    except ValueError:
        return x  # Return as is if conversion to float fails

numeric_cols = [col for col in leaderboard_df.columns if leaderboard_df[col].dtype in ['float64', 'float32']]
leaderboard_df[numeric_cols] = leaderboard_df[numeric_cols].applymap(custom_format)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    # type_query: list,
    # precision_query: str,
    # size_query: list,
    # show_deleted: bool,
    query: str,
):
    # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
    filtered_df = filter_queries(query, hidden_df)
    df = select_columns(filtered_df, columns)
    return df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [
    #     AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns] 
    ]
    return filtered_df


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            existing_columns = [col for col in [AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] if col in filtered_df.columns]
            filtered_df = filtered_df.drop_duplicates(subset=existing_columns)

    return filtered_df



def filter_models(
    df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
    # Show all models
    # if show_deleted:
    #     filtered_df = df
    # else:  # Show only still on the hub models
    #     filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
    
    filtered_df = df

    type_emoji = [t[0] for t in type_query]
    # filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
    # filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]

    numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
    params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
    mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
    filtered_df = filtered_df.loc[mask]

    return filtered_df


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… 3D-POPE Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if not c.hidden and not c.never_hidden
                            ],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                    # with gr.Row():
                    #     deleted_models_visibility = gr.Checkbox(
                    #         value=False, label="Show gated/private/deleted models", interactive=True
                    #     )
                # with gr.Column(min_width=320):
                    #with gr.Box(elem_id="box-filter"):

            leaderboard_table = gr.components.Dataframe(
                value=leaderboard_df[
                    [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
                    + shown_columns.value
                ],
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=original_df[COLS],
                headers=COLS,
                datatype=TYPES,
                visible=False,
            )
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    # deleted_models_visibility,
                    search_bar,
                ],
                leaderboard_table,
            )

            for selector in [shown_columns]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        # deleted_models_visibility,
                        search_bar,
                    ],
                    leaderboard_table,
                    queue=True,
                )


        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
            with gr.Row():
                gr.Markdown("# πŸ“‹ Submit your results here!", elem_classes="markdown-text")

            with gr.Row():
                    model_name_textbox = gr.Textbox(label="Model name")
                    model_zip_file = gr.File(label="Upload model prediction result ZIP file")
                    # model_link_textbox = gr.Textbox(label="Link to model page")
            with gr.Row():
                gr.Column()
                with gr.Column(scale=2):
                    submit_button = gr.Button("Submit Model")
                    submission_result = gr.Markdown()

                    submit_button.click(
                        handle_new_eval_submission,
                        [model_name_textbox, model_zip_file],
                        submission_result
                    )
                gr.Column()

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()