Madhavan Iyengar commited on
Commit
b09d195
·
1 Parent(s): b5bca51

fix filtering

Browse files
Files changed (2) hide show
  1. app.py +6 -4
  2. src/display/utils.py +6 -6
app.py CHANGED
@@ -130,10 +130,12 @@ def filter_models(
130
  df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
131
  ) -> pd.DataFrame:
132
  # Show all models
133
- if show_deleted:
134
- filtered_df = df
135
- else: # Show only still on the hub models
136
- filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
 
 
137
 
138
  type_emoji = [t[0] for t in type_query]
139
  filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
 
130
  df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
131
  ) -> pd.DataFrame:
132
  # Show all models
133
+ # if show_deleted:
134
+ # filtered_df = df
135
+ # else: # Show only still on the hub models
136
+ # filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
137
+
138
+ filtered_df = df
139
 
140
  type_emoji = [t[0] for t in type_query]
141
  filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
src/display/utils.py CHANGED
@@ -32,14 +32,14 @@ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "ma
32
  for task in Tasks:
33
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
34
  # Model information
35
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", True)])
36
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", True)])
37
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", True, False)])
38
  auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)])
39
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", True)])
40
  auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", True)])
41
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", True)])
42
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", True)])
43
  auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
44
 
45
  # We use make dataclass to dynamically fill the scores from Tasks
 
32
  for task in Tasks:
33
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
34
  # Model information
35
+ auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, True)])
36
+ auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False, True)])
37
+ auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
38
  auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)])
39
+ auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False, True)])
40
  auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", True)])
41
+ auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, True)])
42
+ auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, True)])
43
  auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
44
 
45
  # We use make dataclass to dynamically fill the scores from Tasks