sitammeur commited on
Commit
d3dcf57
·
verified ·
1 Parent(s): 2fd914d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -62
app.py CHANGED
@@ -1,62 +1,62 @@
1
- # Installing the latest version of the transformers library
2
- import os
3
- os.system("pip install ./transformers-4.47.0.dev0-py3-none-any.whl")
4
-
5
- # Importing the requirements
6
- import warnings
7
- warnings.filterwarnings("ignore")
8
-
9
- import gradio as gr
10
- from src.app.response import describe_image
11
-
12
-
13
- # Image, text query, and input parameters
14
- image = gr.Image(type="pil", label="Image")
15
- text = gr.Textbox(label="Question", placeholder="Enter your question here")
16
- max_new_tokens = gr.Slider(
17
- minimum=20, maximum=160, step=1, value=80, step=10, label="Max Tokens"
18
- )
19
-
20
- # Output for the interface
21
- answer = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True)
22
-
23
- # Examples for the interface
24
- examples = [
25
- [
26
- "images/cat.jpg",
27
- "How many cats are there?",
28
- 80,
29
- ],
30
- [
31
- "images/dog.jpg",
32
- "What color is the dog?",
33
- 80,
34
- ],
35
- [
36
- "images/bird.jpg",
37
- "What is the bird doing?",
38
- 160,
39
- ],
40
- ]
41
-
42
- # Title, description, and article for the interface
43
- title = "Visual Question Answering"
44
- description = "Gradio Demo for the PaliGemma 2 Vision Language Understanding and Generation model. This model can answer questions about images in natural language. To use it, upload your image, type a question, select associated parameters, use the default values, click 'Submit', or click one of the examples to load them. You can read more at the links below."
45
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2412.03555' target='_blank'>Model Paper</a> | <a href='https://huggingface.co/google/paligemma2-3b-ft-docci-448' target='_blank'>Model Page</a></p>"
46
-
47
-
48
- # Launch the interface
49
- interface = gr.Interface(
50
- fn=describe_image,
51
- inputs=[image, text, max_new_tokens],
52
- outputs=answer,
53
- examples=examples,
54
- cache_examples=True,
55
- cache_mode="lazy",
56
- title=title,
57
- description=description,
58
- article=article,
59
- theme="Nymbo/Nymbo_Theme",
60
- flagging_mode="never",
61
- )
62
- interface.launch(debug=False)
 
1
+ # Installing the latest version of the transformers library
2
+ import os
3
+ os.system("pip install ./transformers-4.47.0.dev0-py3-none-any.whl")
4
+
5
+ # Importing the requirements
6
+ import warnings
7
+ warnings.filterwarnings("ignore")
8
+
9
+ import gradio as gr
10
+ from src.app.response import describe_image
11
+
12
+
13
+ # Image, text query, and input parameters
14
+ image = gr.Image(type="pil", label="Image")
15
+ text = gr.Textbox(label="Question", placeholder="Enter your question here")
16
+ max_new_tokens = gr.Slider(
17
+ minimum=20, maximum=160, step=10, value=80, label="Max Tokens"
18
+ )
19
+
20
+ # Output for the interface
21
+ answer = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True)
22
+
23
+ # Examples for the interface
24
+ examples = [
25
+ [
26
+ "images/cat.jpg",
27
+ "How many cats are there?",
28
+ 80,
29
+ ],
30
+ [
31
+ "images/dog.jpg",
32
+ "What color is the dog?",
33
+ 80,
34
+ ],
35
+ [
36
+ "images/bird.jpg",
37
+ "What is the bird doing?",
38
+ 160,
39
+ ],
40
+ ]
41
+
42
+ # Title, description, and article for the interface
43
+ title = "Visual Question Answering"
44
+ description = "Gradio Demo for the PaliGemma 2 Vision Language Understanding and Generation model. This model can answer questions about images in natural language. To use it, upload your image, type a question, select associated parameters, use the default values, click 'Submit', or click one of the examples to load them. You can read more at the links below."
45
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2412.03555' target='_blank'>Model Paper</a> | <a href='https://huggingface.co/google/paligemma2-3b-ft-docci-448' target='_blank'>Model Page</a></p>"
46
+
47
+
48
+ # Launch the interface
49
+ interface = gr.Interface(
50
+ fn=describe_image,
51
+ inputs=[image, text, max_new_tokens],
52
+ outputs=answer,
53
+ examples=examples,
54
+ cache_examples=True,
55
+ cache_mode="lazy",
56
+ title=title,
57
+ description=description,
58
+ article=article,
59
+ theme="Nymbo/Nymbo_Theme",
60
+ flagging_mode="never",
61
+ )
62
+ interface.launch(debug=False)