Spaces:
Running
on
Zero
Running
on
Zero
Update src/app/response.py
Browse files- src/app/response.py +59 -59
src/app/response.py
CHANGED
@@ -1,59 +1,59 @@
|
|
1 |
-
# Necessary imports
|
2 |
-
import sys
|
3 |
-
import PIL.Image
|
4 |
-
import torch
|
5 |
-
import gradio as gr
|
6 |
-
import spaces
|
7 |
-
|
8 |
-
# Local imports
|
9 |
-
from src.config import device, model_name, sampling
|
10 |
-
from src.app.model import
|
11 |
-
from src.logger import logging
|
12 |
-
from src.exception import CustomExceptionHandling
|
13 |
-
|
14 |
-
|
15 |
-
# Model
|
16 |
-
model,
|
17 |
-
|
18 |
-
|
19 |
-
@spaces.GPU
|
20 |
-
def describe_image(text: str, image: PIL.Image.Image, max_new_tokens: int) -> str:
|
21 |
-
"""
|
22 |
-
Generates a response based on the given text and image using the model.
|
23 |
-
|
24 |
-
Args:
|
25 |
-
- text (str): The input text to be processed.
|
26 |
-
- image (PIL.Image.Image): The input image to be processed.
|
27 |
-
- max_new_tokens (int): The maximum number of new tokens to generate.
|
28 |
-
|
29 |
-
Returns:
|
30 |
-
str: The generated response text.
|
31 |
-
"""
|
32 |
-
try:
|
33 |
-
# Check if image or text is None
|
34 |
-
if not image or not text:
|
35 |
-
gr.Warning("Please provide an image and a question.")
|
36 |
-
|
37 |
-
# Prepare the inputs
|
38 |
-
text = "answer en " + text
|
39 |
-
inputs = processor(text=text, images=image, return_tensors="pt").to(device)
|
40 |
-
|
41 |
-
# Generate the response
|
42 |
-
with torch.inference_mode():
|
43 |
-
generated_ids = model.generate(
|
44 |
-
**inputs, max_new_tokens=max_new_tokens, do_sample=sampling
|
45 |
-
)
|
46 |
-
|
47 |
-
# Decode the generated response
|
48 |
-
result = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
49 |
-
|
50 |
-
# Log the successful generation of the answer
|
51 |
-
logging.info("Answer generated successfully.")
|
52 |
-
|
53 |
-
# Return the generated response
|
54 |
-
return result[0][len(text) :].lstrip("\n")
|
55 |
-
|
56 |
-
# Handle exceptions that may occur during answer generation
|
57 |
-
except Exception as e:
|
58 |
-
# Custom exception handling
|
59 |
-
raise CustomExceptionHandling(e, sys) from e
|
|
|
1 |
+
# Necessary imports
|
2 |
+
import sys
|
3 |
+
import PIL.Image
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
|
8 |
+
# Local imports
|
9 |
+
from src.config import device, model_name, sampling
|
10 |
+
from src.app.model import load_model_and_processor
|
11 |
+
from src.logger import logging
|
12 |
+
from src.exception import CustomExceptionHandling
|
13 |
+
|
14 |
+
|
15 |
+
# Model and processor
|
16 |
+
model, processor = load_model_and_processor(model_name, device)
|
17 |
+
|
18 |
+
|
19 |
+
@spaces.GPU
|
20 |
+
def describe_image(text: str, image: PIL.Image.Image, max_new_tokens: int) -> str:
|
21 |
+
"""
|
22 |
+
Generates a response based on the given text and image using the model.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
- text (str): The input text to be processed.
|
26 |
+
- image (PIL.Image.Image): The input image to be processed.
|
27 |
+
- max_new_tokens (int): The maximum number of new tokens to generate.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
str: The generated response text.
|
31 |
+
"""
|
32 |
+
try:
|
33 |
+
# Check if image or text is None
|
34 |
+
if not image or not text:
|
35 |
+
gr.Warning("Please provide an image and a question.")
|
36 |
+
|
37 |
+
# Prepare the inputs
|
38 |
+
text = "answer en " + text
|
39 |
+
inputs = processor(text=text, images=image, return_tensors="pt").to(device)
|
40 |
+
|
41 |
+
# Generate the response
|
42 |
+
with torch.inference_mode():
|
43 |
+
generated_ids = model.generate(
|
44 |
+
**inputs, max_new_tokens=max_new_tokens, do_sample=sampling
|
45 |
+
)
|
46 |
+
|
47 |
+
# Decode the generated response
|
48 |
+
result = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
49 |
+
|
50 |
+
# Log the successful generation of the answer
|
51 |
+
logging.info("Answer generated successfully.")
|
52 |
+
|
53 |
+
# Return the generated response
|
54 |
+
return result[0][len(text) :].lstrip("\n")
|
55 |
+
|
56 |
+
# Handle exceptions that may occur during answer generation
|
57 |
+
except Exception as e:
|
58 |
+
# Custom exception handling
|
59 |
+
raise CustomExceptionHandling(e, sys) from e
|