File size: 1,792 Bytes
d3dcf57
ac90cb6
 
d3dcf57
 
0d78f16
d3dcf57
 
e308804
d3dcf57
 
36f34bd
 
 
 
 
 
d3dcf57
e308804
d3dcf57
 
36f34bd
d3dcf57
 
 
80f9c5b
 
 
d3dcf57
 
 
6b709ca
 
d3dcf57
 
 
 
 
d78a2b4
e308804
d3dcf57
 
 
 
 
 
 
e308804
d3dcf57
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Importing the requirements
import warnings
warnings.filterwarnings("ignore")

import gradio as gr
from src.app.response import caption_image


# Image and input parameters
image = gr.Image(type="pil", label="Image")
max_new_tokens = gr.Slider(
    minimum=20,
    maximum=160,
    value=80,
    step=10,
    label="Max Tokens",
    info="Use larger values for detailed captions",
)
sampling = gr.Checkbox(value=False, label="Sampling")

# Output for the interface
answer = gr.Textbox(label="Generated Caption", show_label=True, show_copy_button=True)

# Examples for the interface
examples = [
    ["images/cat.jpg", 100, False],
    ["images/dog.jpg", 80, True],
    ["images/bird.jpg", 160, False],
]

# Title, description, and article for the interface
title = "PaliGemma 2 Image Captioning"
description = "Gradio Demo for the PaliGemma 2 Vision Language Understanding and Generation model. This model generates natural language captions based on uploaded images. To use it, upload your image, select the desired parameters (or stick with the default settings), and click 'Submit.' You can also choose one of the examples to load a predefined image. For more information, please refer to the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2412.03555' target='_blank'>Model Paper</a> | <a href='https://huggingface.co/google/paligemma2-3b-ft-docci-448' target='_blank'>Model Page</a></p>"


# Launch the interface
interface = gr.Interface(
    fn=caption_image,
    inputs=[image, max_new_tokens, sampling],
    outputs=answer,
    examples=examples,
    cache_examples=True,
    cache_mode="lazy",
    title=title,
    description=description,
    article=article,
    theme="Monochrome",
    flagging_mode="never",
)
interface.launch(debug=False)