Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,549 Bytes
985eabb cc1b568 985eabb cc1b568 1f7ba92 cc1b568 1f7ba92 cc1b568 1f7ba92 02a0e92 cc1b568 1f7ba92 02a0e92 1f7ba92 02a0e92 1f7ba92 fcba473 cc1b568 1f7ba92 02a0e92 cc1b568 1f7ba92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model and tokenizer
model_name = "akjindal53244/Llama-3.1-Storm-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
@spaces.GPU(duration=120)
def generate_text(prompt, max_length, temperature):
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
formatted_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=max_length,
do_sample=True,
temperature=temperature,
top_k=100,
top_p=0.95,
)
return tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(lines=5, label="Prompt"),
gr.Slider(minimum=1, maximum=500, value=128, step=1, label="Max Length"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
],
outputs=gr.Textbox(lines=10, label="Generated Text"),
title="Llama-3.1-Storm-8B Text Generation",
description="Enter a prompt to generate text using the Llama-3.1-Storm-8B model.",
)
iface.launch() |