Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,209 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoTokenizer, LlamaForCausalLM
|
4 |
import spaces
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import spaces
|
4 |
+
import torchaudio
|
5 |
+
from whisperspeech.vq_stoks import RQBottleneckTransformer
|
6 |
+
from encodec.utils import convert_audio
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
8 |
+
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
9 |
+
from threading import Thread
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
from generate_audio import (
|
13 |
+
TTSProcessor,
|
14 |
+
)
|
15 |
+
import uuid
|
16 |
+
|
17 |
+
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
vq_model = RQBottleneckTransformer.load_model(
|
20 |
+
"whisper-vq-stoks-medium-en+pl-fixed.model"
|
21 |
+
).to(device)
|
22 |
+
# tts = TTSProcessor('cpu')
|
23 |
+
use_8bit = False
|
24 |
+
llm_path = "akjindal53244/Llama-3.1-Storm-8B"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_path)
|
26 |
+
model_kwargs = {}
|
27 |
+
if use_8bit:
|
28 |
+
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
29 |
+
load_in_8bit=True,
|
30 |
+
llm_int8_enable_fp32_cpu_offload=False,
|
31 |
+
llm_int8_has_fp16_weight=False,
|
32 |
+
)
|
33 |
+
else:
|
34 |
+
model_kwargs["torch_dtype"] = torch.bfloat16
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(llm_path, **model_kwargs).to(device)
|
36 |
+
|
37 |
+
@spaces.GPU
|
38 |
+
def audio_to_sound_tokens_whisperspeech(audio_path):
|
39 |
+
vq_model.ensure_whisper('cuda')
|
40 |
+
wav, sr = torchaudio.load(audio_path)
|
41 |
+
if sr != 16000:
|
42 |
+
wav = torchaudio.functional.resample(wav, sr, 16000)
|
43 |
+
with torch.no_grad():
|
44 |
+
codes = vq_model.encode_audio(wav.to(device))
|
45 |
+
codes = codes[0].cpu().tolist()
|
46 |
+
|
47 |
+
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
48 |
+
return f'<|sound_start|>{result}<|sound_end|>'
|
49 |
+
|
50 |
+
@spaces.GPU
|
51 |
+
def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
|
52 |
+
vq_model.ensure_whisper('cuda')
|
53 |
+
wav, sr = torchaudio.load(audio_path)
|
54 |
+
if sr != 16000:
|
55 |
+
wav = torchaudio.functional.resample(wav, sr, 16000)
|
56 |
+
with torch.no_grad():
|
57 |
+
codes = vq_model.encode_audio(wav.to(device))
|
58 |
+
codes = codes[0].cpu().tolist()
|
59 |
+
|
60 |
+
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
61 |
+
return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'
|
62 |
+
# print(tokenizer.encode("<|sound_0001|>", add_special_tokens=False))# return the audio tensor
|
63 |
+
# print(tokenizer.eos_token)
|
64 |
+
|
65 |
+
@spaces.GPU
|
66 |
+
def text_to_audio_file(text):
|
67 |
+
# gen a random id for the audio file
|
68 |
+
id = str(uuid.uuid4())
|
69 |
+
temp_file = f"./user_audio/{id}_temp_audio.wav"
|
70 |
+
text = text
|
71 |
+
text_split = "_".join(text.lower().split(" "))
|
72 |
+
# remove the last character if it is a period
|
73 |
+
if text_split[-1] == ".":
|
74 |
+
text_split = text_split[:-1]
|
75 |
+
tts = TTSProcessor("cuda")
|
76 |
+
tts.convert_text_to_audio_file(text, temp_file)
|
77 |
+
# logging.info(f"Saving audio to {temp_file}")
|
78 |
+
# torchaudio.save(temp_file, audio.cpu(), sample_rate=24000)
|
79 |
+
print(f"Saved audio to {temp_file}")
|
80 |
+
return temp_file
|
81 |
+
|
82 |
+
|
83 |
+
@spaces.GPU
|
84 |
+
def process_input(audio_file=None):
|
85 |
+
|
86 |
+
for partial_message in process_audio(audio_file):
|
87 |
+
yield partial_message
|
88 |
+
|
89 |
+
|
90 |
+
@spaces.GPU
|
91 |
+
def process_transcribe_input(audio_file=None):
|
92 |
+
|
93 |
+
for partial_message in process_audio(audio_file, transcript=True):
|
94 |
+
yield partial_message
|
95 |
+
|
96 |
+
class StopOnTokens(StoppingCriteria):
|
97 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
98 |
+
# encode </s> token
|
99 |
+
stop_ids = [tokenizer.eos_token_id, 128009] # Adjust this based on your model's tokenizer
|
100 |
+
for stop_id in stop_ids:
|
101 |
+
if input_ids[0][-1] == stop_id:
|
102 |
+
return True
|
103 |
+
return False
|
104 |
+
|
105 |
+
@spaces.GPU
|
106 |
+
def process_audio(audio_file, transcript=False):
|
107 |
+
if audio_file is None:
|
108 |
+
raise ValueError("No audio file provided")
|
109 |
+
|
110 |
+
logging.info(f"Audio file received: {audio_file}")
|
111 |
+
logging.info(f"Audio file type: {type(audio_file)}")
|
112 |
+
|
113 |
+
sound_tokens = audio_to_sound_tokens_whisperspeech_transcribe(audio_file) if transcript else audio_to_sound_tokens_whisperspeech(audio_file)
|
114 |
+
logging.info("Sound tokens generated successfully")
|
115 |
+
# logging.info(f"audio_file: {audio_file.name}")
|
116 |
+
messages = [
|
117 |
+
{"role": "user", "content": sound_tokens},
|
118 |
+
]
|
119 |
+
|
120 |
+
stop = StopOnTokens()
|
121 |
+
input_str = tokenizer.apply_chat_template(messages, tokenize=False)
|
122 |
+
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
123 |
+
input_ids = input_ids.to(model.device)
|
124 |
+
|
125 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
126 |
+
generation_kwargs = dict(
|
127 |
+
input_ids=input_ids,
|
128 |
+
streamer=streamer,
|
129 |
+
max_new_tokens=1024,
|
130 |
+
do_sample=False,
|
131 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
132 |
+
)
|
133 |
+
|
134 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
135 |
+
thread.start()
|
136 |
+
|
137 |
+
partial_message = ""
|
138 |
+
for new_token in streamer:
|
139 |
+
partial_message += new_token
|
140 |
+
if tokenizer.eos_token in partial_message:
|
141 |
+
break
|
142 |
+
partial_message = partial_message.replace("assistant\n\n", "")
|
143 |
+
yield partial_message
|
144 |
+
# def stop_generation():
|
145 |
+
# # This is a placeholder. Implement actual stopping logic here if needed.
|
146 |
+
# return "Generation stopped.", gr.Button.update(interactive=False)
|
147 |
+
# take all the examples from the examples folder
|
148 |
+
good_examples = []
|
149 |
+
for file in os.listdir("./examples"):
|
150 |
+
if file.endswith(".wav"):
|
151 |
+
good_examples.append([f"./examples/{file}"])
|
152 |
+
bad_examples = []
|
153 |
+
for file in os.listdir("./bad_examples"):
|
154 |
+
if file.endswith(".wav"):
|
155 |
+
bad_examples.append([f"./bad_examples/{file}"])
|
156 |
+
examples = []
|
157 |
+
examples.extend(good_examples)
|
158 |
+
examples.extend(bad_examples)
|
159 |
+
with gr.Blocks() as iface:
|
160 |
+
gr.Markdown("# Llama3.1-S: checkpoint Aug 19, 2024")
|
161 |
+
gr.Markdown("Enter text to convert to audio, then submit the audio to generate text or Upload Audio")
|
162 |
+
gr.Markdown("Powered by [Homebrew Ltd](https://homebrew.ltd/) | [Read our blog post](https://homebrew.ltd/blog/llama3-just-got-ears)")
|
163 |
+
|
164 |
+
with gr.Row():
|
165 |
+
input_type = gr.Radio(["text", "audio"], label="Input Type", value="audio")
|
166 |
+
text_input = gr.Textbox(label="Text Input", visible=False)
|
167 |
+
audio_input = gr.Audio(label="Audio", type="filepath", visible=True)
|
168 |
+
# audio_output = gr.Audio(label="Converted Audio", type="filepath", visible=False)
|
169 |
+
|
170 |
+
convert_button = gr.Button("Make synthetic audio", visible=False)
|
171 |
+
submit_button = gr.Button("Chat with AI using audio")
|
172 |
+
transcrip_button = gr.Button("Make Model transcribe the audio")
|
173 |
+
|
174 |
+
text_output = gr.Textbox(label="Generated Text")
|
175 |
+
|
176 |
+
def update_visibility(input_type):
|
177 |
+
return (gr.update(visible=input_type == "text"),
|
178 |
+
gr.update(visible=input_type == "text"))
|
179 |
+
def convert_and_display(text):
|
180 |
+
audio_file = text_to_audio_file(text)
|
181 |
+
return audio_file
|
182 |
+
def process_example(file_path):
|
183 |
+
return update_visibility("audio")
|
184 |
+
input_type.change(
|
185 |
+
update_visibility,
|
186 |
+
inputs=[input_type],
|
187 |
+
outputs=[text_input, convert_button]
|
188 |
+
)
|
189 |
+
|
190 |
+
convert_button.click(
|
191 |
+
convert_and_display,
|
192 |
+
inputs=[text_input],
|
193 |
+
outputs=[audio_input]
|
194 |
+
)
|
195 |
+
|
196 |
+
submit_button.click(
|
197 |
+
process_input,
|
198 |
+
inputs=[audio_input],
|
199 |
+
outputs=[text_output]
|
200 |
+
)
|
201 |
+
transcrip_button.click(
|
202 |
+
process_transcribe_input,
|
203 |
+
inputs=[audio_input],
|
204 |
+
outputs=[text_output]
|
205 |
+
)
|
206 |
+
|
207 |
+
gr.Examples(examples, inputs=[audio_input])
|
208 |
+
iface.queue()
|
209 |
+
iface.launch(
|