InternVL2_5-2B / app.py
developer0hye's picture
Update app.py
fa48fd5 verified
import gradio as gr
import spaces
import torch
import os
import uuid
import io
import numpy as np
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from decord import VideoReader, cpu
# =============================================================================
# InternVL ์ „์ฒ˜๋ฆฌ/๋กœ๋”ฉ ์ฝ”๋“œ (์›๋ณธ ์˜ˆ์‹œ์—์„œ ๋ฐœ์ทŒ)
# =============================================================================
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
# ์ด๋ฏธ์ง€ ๋ฉด์  ๊ธฐ์ค€์œผ๋กœ ์ข€ ๋” ํฐ ์ชฝ ์„ ํƒ
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(img) for img in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=8):
"""
InternVL ์˜ˆ์‹œ ์ฝ”๋“œ ์ฐธ๊ณ : ์—ฌ๋Ÿฌ ํ”„๋ ˆ์ž„์„ ์ถ”์ถœํ•˜์—ฌ dynamic_preprocess ์ ์šฉ.
์—ฌ๊ธฐ์„œ๋Š” ๊ธฐ๋ณธ์ ์œผ๋กœ num_segments=8๋กœ ์„ค์ •.
"""
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
frame = vr[frame_index]
img = Image.fromarray(frame.asnumpy()).convert('RGB')
processed_imgs = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
tile_values = [transform(tile) for tile in processed_imgs]
tile_values = torch.stack(tile_values)
num_patches_list.append(tile_values.shape[0])
pixel_values_list.append(tile_values)
# ์—ฌ๋Ÿฌ ํ”„๋ ˆ์ž„์„ ์ด์–ด ๋ถ™์—ฌ ์ตœ์ข… pixel_values ์ƒ์„ฑ
pixel_values = torch.cat(pixel_values_list, dim=0) # (sum(num_patches_list), 3, H, W)
return pixel_values, num_patches_list
# =============================================================================
# InternVL ๋ชจ๋ธ ๋กœ๋”ฉ
# =============================================================================
MODEL_ID = "OpenGVLab/InternVL2_5-2B"
model = AutoModel.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
trust_remote_code=True,
use_fast=False
)
# Gradio ์ƒ๋‹จ์— ํ‘œ์‹œํ•  ์„ค๋ช… ๋ฌธ๊ตฌ
DESCRIPTION = "[InternVL2_5-2B Demo](https://github.com/OpenGVLab/InternVL) - Using the InternVL2_5-2B"
image_extensions = Image.registered_extensions()
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
def identify_and_save_blob(blob_path):
"""
Qwen ์˜ˆ์ œ ์ฝ”๋“œ์™€ ๋™์ผ: blob์„ ์—ด์–ด๋ณด๊ณ  ์ด๋ฏธ์ง€์ธ์ง€ ์˜์ƒ์ธ์ง€ ํ™•์ธ ํ›„,
์ž„์‹œ ํŒŒ์ผ๋กœ ์ €์žฅํ•˜์—ฌ ๊ฒฝ๋กœ ๋ฆฌํ„ด
"""
try:
with open(blob_path, 'rb') as file:
blob_content = file.read()
# Try to identify if it's an image
try:
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
extension = ".png" # Default to PNG for saving
media_type = "image"
except (IOError, SyntaxError):
# If it's not a valid image, assume it's a video
extension = ".mp4" # Default to MP4 for saving
media_type = "video"
# Create a unique filename
filename = f"temp_{uuid.uuid4()}_media{extension}"
with open(filename, "wb") as f:
f.write(blob_content)
return filename, media_type
except FileNotFoundError:
raise ValueError(f"The file {blob_path} was not found.")
except Exception as e:
raise ValueError(f"An error occurred while processing the file: {e}")
def process_file_upload(file_path):
"""
ํŒŒ์ผ ์—…๋กœ๋“œ ์‹œ ์ด๋ฏธ์ง€/์˜์ƒ ๋ฏธ๋ฆฌ๋ณด๊ธฐ ํ˜น์€ ๊ทธ๋Œ€๋กœ ํŒจ์Šค.
"""
if isinstance(file_path, str):
if file_path.endswith(tuple([i for i, f in image_extensions.items()])):
# ์ด๋ฏธ์ง€๋ฅผ ์—ด์–ด์„œ preview๋กœ ๋„˜๊น€
return file_path, Image.open(file_path)
elif file_path.endswith(video_extensions):
# ์˜์ƒ์€ preview๋ฅผ None์œผ๋กœ
return file_path, None
else:
# blob ํŒŒ์ผ์ธ ๊ฒฝ์šฐ ์ฒ˜๋ฆฌ
try:
media_path, media_type = identify_and_save_blob(file_path)
if media_type == "image":
return media_path, Image.open(media_path)
return media_path, None
except Exception as e:
print(e)
raise ValueError("Unsupported media type. Please upload an image or video.")
return None, None
@spaces.GPU
def internvl_inference(media_input, text_input=None):
"""
Qwen ์˜ˆ์ œ์˜ qwen_inference ๋Œ€์‹  InternVL์„ ์ด์šฉํ•œ ์ถ”๋ก  ํ•จ์ˆ˜.
- ์ด๋ฏธ์ง€/์˜์ƒ ํŒŒ์ผ์„ InternVL์—์„œ ์š”๊ตฌํ•˜๋Š” pixel_values๋กœ ๋ณ€ํ™˜ ํ›„
model.chat() ํ˜ธ์ถœํ•˜์—ฌ ๋‹ต๋ณ€ ์ƒ์„ฑ.
"""
if isinstance(media_input, str): # If it's a filepath
media_path = media_input
# ๋ฏธ๋””์–ด ์ข…๋ฅ˜ ์‹๋ณ„
if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
media_type = "image"
elif media_path.endswith(video_extensions):
media_type = "video"
else:
# blob์ธ์ง€ ์ฒดํฌ
try:
media_path, media_type = identify_and_save_blob(media_input)
except Exception as e:
print(e)
raise ValueError("Unsupported media type. Please upload an image or video.")
else:
return "No media input found"
# ์ด๋ฏธ์ง€ vs ์˜์ƒ ์ฒ˜๋ฆฌ
if media_type == "image":
# ๋‹จ์ผ ์ด๋ฏธ์ง€๋งŒ ์ฒ˜๋ฆฌํ•œ๋‹ค๊ณ  ๊ฐ€์ • (๋ฉ€ํ‹ฐ-์ด๋ฏธ์ง€๋„ ํ™•์žฅ ๊ฐ€๋Šฅ)
pixel_values = load_image(media_path, max_num=12)
pixel_values = pixel_values.to(torch.bfloat16).cuda() # (N, 3, H, W)
# InternVL ๋Œ€ํ™”
question = f"<image>\n{text_input}" if text_input else "<image>\n"
generation_config = dict(max_new_tokens=1024, do_sample=True)
response = model.chat(
tokenizer,
pixel_values,
question,
generation_config
)
return response
elif media_type == "video":
# ์˜์ƒ: ์˜ˆ์‹œ๋กœ ์ฒซ 8ํ”„๋ ˆ์ž„์— ๋Œ€ํ•ด ์ฒ˜๋ฆฌ
pixel_values, num_patches_list = load_video(
media_path,
num_segments=8,
max_num=1
)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
question_prefix = "".join([f"Frame{i+1}: <image>\n" for i in range(len(num_patches_list))])
question = question_prefix + (text_input if text_input else "")
generation_config = dict(max_new_tokens=1024, do_sample=True)
# ์˜์ƒ์—์„œ๋„ ๋™์ผํ•œ chat() ํ•จ์ˆ˜ ์‚ฌ์šฉ
response = model.chat(
tokenizer,
pixel_values,
question,
generation_config,
num_patches_list=num_patches_list
)
return response
return "Unsupported media type"
# ๊ฐ„๋‹จํ•œ CSS
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
# Gradio ๋ฐ๋ชจ ๊ตฌ์„ฑ
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Image/Video Input"):
with gr.Row():
with gr.Column():
input_media = gr.File(
label="Upload Image or Video", type="filepath"
)
preview_image = gr.Image(label="Preview", visible=True)
text_input = gr.Textbox(label="Question")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
input_media.change(
fn=process_file_upload,
inputs=[input_media],
outputs=[input_media, preview_image]
)
submit_btn.click(
internvl_inference,
[input_media, text_input],
[output_text]
)
demo.launch(debug=True)