Spaces:
Runtime error
Runtime error
File size: 11,603 Bytes
7bf3214 fa48fd5 7bf3214 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import gradio as gr
import spaces
import torch
import os
import uuid
import io
import numpy as np
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from decord import VideoReader, cpu
# =============================================================================
# InternVL ์ ์ฒ๋ฆฌ/๋ก๋ฉ ์ฝ๋ (์๋ณธ ์์์์ ๋ฐ์ท)
# =============================================================================
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
# ์ด๋ฏธ์ง ๋ฉด์ ๊ธฐ์ค์ผ๋ก ์ข ๋ ํฐ ์ชฝ ์ ํ
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(img) for img in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=8):
"""
InternVL ์์ ์ฝ๋ ์ฐธ๊ณ : ์ฌ๋ฌ ํ๋ ์์ ์ถ์ถํ์ฌ dynamic_preprocess ์ ์ฉ.
์ฌ๊ธฐ์๋ ๊ธฐ๋ณธ์ ์ผ๋ก num_segments=8๋ก ์ค์ .
"""
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
frame = vr[frame_index]
img = Image.fromarray(frame.asnumpy()).convert('RGB')
processed_imgs = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
tile_values = [transform(tile) for tile in processed_imgs]
tile_values = torch.stack(tile_values)
num_patches_list.append(tile_values.shape[0])
pixel_values_list.append(tile_values)
# ์ฌ๋ฌ ํ๋ ์์ ์ด์ด ๋ถ์ฌ ์ต์ข
pixel_values ์์ฑ
pixel_values = torch.cat(pixel_values_list, dim=0) # (sum(num_patches_list), 3, H, W)
return pixel_values, num_patches_list
# =============================================================================
# InternVL ๋ชจ๋ธ ๋ก๋ฉ
# =============================================================================
MODEL_ID = "OpenGVLab/InternVL2_5-2B"
model = AutoModel.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
trust_remote_code=True,
use_fast=False
)
# Gradio ์๋จ์ ํ์ํ ์ค๋ช
๋ฌธ๊ตฌ
DESCRIPTION = "[InternVL2_5-2B Demo](https://github.com/OpenGVLab/InternVL) - Using the InternVL2_5-2B"
image_extensions = Image.registered_extensions()
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
def identify_and_save_blob(blob_path):
"""
Qwen ์์ ์ฝ๋์ ๋์ผ: blob์ ์ด์ด๋ณด๊ณ ์ด๋ฏธ์ง์ธ์ง ์์์ธ์ง ํ์ธ ํ,
์์ ํ์ผ๋ก ์ ์ฅํ์ฌ ๊ฒฝ๋ก ๋ฆฌํด
"""
try:
with open(blob_path, 'rb') as file:
blob_content = file.read()
# Try to identify if it's an image
try:
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
extension = ".png" # Default to PNG for saving
media_type = "image"
except (IOError, SyntaxError):
# If it's not a valid image, assume it's a video
extension = ".mp4" # Default to MP4 for saving
media_type = "video"
# Create a unique filename
filename = f"temp_{uuid.uuid4()}_media{extension}"
with open(filename, "wb") as f:
f.write(blob_content)
return filename, media_type
except FileNotFoundError:
raise ValueError(f"The file {blob_path} was not found.")
except Exception as e:
raise ValueError(f"An error occurred while processing the file: {e}")
def process_file_upload(file_path):
"""
ํ์ผ ์
๋ก๋ ์ ์ด๋ฏธ์ง/์์ ๋ฏธ๋ฆฌ๋ณด๊ธฐ ํน์ ๊ทธ๋๋ก ํจ์ค.
"""
if isinstance(file_path, str):
if file_path.endswith(tuple([i for i, f in image_extensions.items()])):
# ์ด๋ฏธ์ง๋ฅผ ์ด์ด์ preview๋ก ๋๊น
return file_path, Image.open(file_path)
elif file_path.endswith(video_extensions):
# ์์์ preview๋ฅผ None์ผ๋ก
return file_path, None
else:
# blob ํ์ผ์ธ ๊ฒฝ์ฐ ์ฒ๋ฆฌ
try:
media_path, media_type = identify_and_save_blob(file_path)
if media_type == "image":
return media_path, Image.open(media_path)
return media_path, None
except Exception as e:
print(e)
raise ValueError("Unsupported media type. Please upload an image or video.")
return None, None
@spaces.GPU
def internvl_inference(media_input, text_input=None):
"""
Qwen ์์ ์ qwen_inference ๋์ InternVL์ ์ด์ฉํ ์ถ๋ก ํจ์.
- ์ด๋ฏธ์ง/์์ ํ์ผ์ InternVL์์ ์๊ตฌํ๋ pixel_values๋ก ๋ณํ ํ
model.chat() ํธ์ถํ์ฌ ๋ต๋ณ ์์ฑ.
"""
if isinstance(media_input, str): # If it's a filepath
media_path = media_input
# ๋ฏธ๋์ด ์ข
๋ฅ ์๋ณ
if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
media_type = "image"
elif media_path.endswith(video_extensions):
media_type = "video"
else:
# blob์ธ์ง ์ฒดํฌ
try:
media_path, media_type = identify_and_save_blob(media_input)
except Exception as e:
print(e)
raise ValueError("Unsupported media type. Please upload an image or video.")
else:
return "No media input found"
# ์ด๋ฏธ์ง vs ์์ ์ฒ๋ฆฌ
if media_type == "image":
# ๋จ์ผ ์ด๋ฏธ์ง๋ง ์ฒ๋ฆฌํ๋ค๊ณ ๊ฐ์ (๋ฉํฐ-์ด๋ฏธ์ง๋ ํ์ฅ ๊ฐ๋ฅ)
pixel_values = load_image(media_path, max_num=12)
pixel_values = pixel_values.to(torch.bfloat16).cuda() # (N, 3, H, W)
# InternVL ๋ํ
question = f"<image>\n{text_input}" if text_input else "<image>\n"
generation_config = dict(max_new_tokens=1024, do_sample=True)
response = model.chat(
tokenizer,
pixel_values,
question,
generation_config
)
return response
elif media_type == "video":
# ์์: ์์๋ก ์ฒซ 8ํ๋ ์์ ๋ํด ์ฒ๋ฆฌ
pixel_values, num_patches_list = load_video(
media_path,
num_segments=8,
max_num=1
)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
question_prefix = "".join([f"Frame{i+1}: <image>\n" for i in range(len(num_patches_list))])
question = question_prefix + (text_input if text_input else "")
generation_config = dict(max_new_tokens=1024, do_sample=True)
# ์์์์๋ ๋์ผํ chat() ํจ์ ์ฌ์ฉ
response = model.chat(
tokenizer,
pixel_values,
question,
generation_config,
num_patches_list=num_patches_list
)
return response
return "Unsupported media type"
# ๊ฐ๋จํ CSS
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
# Gradio ๋ฐ๋ชจ ๊ตฌ์ฑ
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Image/Video Input"):
with gr.Row():
with gr.Column():
input_media = gr.File(
label="Upload Image or Video", type="filepath"
)
preview_image = gr.Image(label="Preview", visible=True)
text_input = gr.Textbox(label="Question")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
input_media.change(
fn=process_file_upload,
inputs=[input_media],
outputs=[input_media, preview_image]
)
submit_btn.click(
internvl_inference,
[input_media, text_input],
[output_text]
)
demo.launch(debug=True)
|