Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
import os | |
import sys | |
import shutil | |
# single thread doubles cuda performance - needs to be set before torch import | |
if any(arg.startswith('--execution-provider') for arg in sys.argv): | |
os.environ['OMP_NUM_THREADS'] = '1' | |
import warnings | |
from typing import List | |
import platform | |
import signal | |
import torch | |
import onnxruntime | |
import pathlib | |
import argparse | |
from time import time | |
import roop.globals | |
import roop.metadata | |
import roop.utilities as util | |
import roop.util_ffmpeg as ffmpeg | |
import ui.main as main | |
from settings import Settings | |
from roop.face_util import extract_face_images | |
from roop.ProcessEntry import ProcessEntry | |
from roop.ProcessMgr import ProcessMgr | |
from roop.ProcessOptions import ProcessOptions | |
from roop.capturer import get_video_frame_total, release_video | |
clip_text = None | |
call_display_ui = None | |
process_mgr = None | |
if 'ROCMExecutionProvider' in roop.globals.execution_providers: | |
del torch | |
warnings.filterwarnings('ignore', category=FutureWarning, module='insightface') | |
warnings.filterwarnings('ignore', category=UserWarning, module='torchvision') | |
def parse_args() -> None: | |
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy()) | |
roop.globals.headless = False | |
program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100)) | |
program.add_argument('--server_share', help='Public server', dest='server_share', action='store_true', default=False) | |
program.add_argument('--cuda_device_id', help='Index of the cuda gpu to use', dest='cuda_device_id', type=int, default=0) | |
roop.globals.startup_args = program.parse_args() | |
# Always enable all processors when using GUI | |
roop.globals.frame_processors = ['face_swapper', 'face_enhancer'] | |
def encode_execution_providers(execution_providers: List[str]) -> List[str]: | |
return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers] | |
def decode_execution_providers(execution_providers: List[str]) -> List[str]: | |
list_providers = [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers())) | |
if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)] | |
try: | |
for i in range(len(list_providers)): | |
if list_providers[i] == 'CUDAExecutionProvider': | |
list_providers[i] = ('CUDAExecutionProvider', {'device_id': roop.globals.cuda_device_id}) | |
torch.cuda.set_device(roop.globals.cuda_device_id) | |
break | |
except: | |
pass | |
return list_providers | |
def suggest_max_memory() -> int: | |
if platform.system().lower() == 'darwin': | |
return 4 | |
return 16 | |
def suggest_execution_providers() -> List[str]: | |
return encode_execution_providers(onnxruntime.get_available_providers()) | |
def suggest_execution_threads() -> int: | |
if 'DmlExecutionProvider' in roop.globals.execution_providers: | |
return 1 | |
if 'ROCMExecutionProvider' in roop.globals.execution_providers: | |
return 1 | |
return 8 | |
def limit_resources() -> None: | |
# limit memory usage | |
if roop.globals.max_memory: | |
memory = roop.globals.max_memory * 1024 ** 3 | |
if platform.system().lower() == 'darwin': | |
memory = roop.globals.max_memory * 1024 ** 6 | |
if platform.system().lower() == 'windows': | |
import ctypes | |
kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined] | |
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory)) | |
else: | |
import resource | |
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory)) | |
def release_resources() -> None: | |
import gc | |
global process_mgr | |
if process_mgr is not None: | |
process_mgr.release_resources() | |
process_mgr = None | |
gc.collect() | |
# if 'CUDAExecutionProvider' in roop.globals.execution_providers and torch.cuda.is_available(): | |
# with torch.cuda.device('cuda'): | |
# torch.cuda.empty_cache() | |
# torch.cuda.ipc_collect() | |
def pre_check() -> bool: | |
if sys.version_info < (3, 9): | |
update_status('Python version is not supported - please upgrade to 3.9 or higher.') | |
return False | |
download_directory_path = util.resolve_relative_path('../models') | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx']) | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GFPGANv1.4.onnx']) | |
util.conditional_download(download_directory_path, ['https://github.com/csxmli2016/DMDNet/releases/download/v1/DMDNet.pth']) | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GPEN-BFR-512.onnx']) | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/restoreformer_plus_plus.onnx']) | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/xseg.onnx']) | |
download_directory_path = util.resolve_relative_path('../models/CLIP') | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/rd64-uni-refined.pth']) | |
download_directory_path = util.resolve_relative_path('../models/CodeFormer') | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/CodeFormerv0.1.onnx']) | |
download_directory_path = util.resolve_relative_path('../models/Frame') | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_artistic.onnx']) | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_stable.onnx']) | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/isnet-general-use.onnx']) | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x4.onnx']) | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x2.onnx']) | |
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/lsdir_x4.onnx']) | |
if not shutil.which('ffmpeg'): | |
update_status('ffmpeg is not installed.') | |
return True | |
def set_display_ui(function): | |
global call_display_ui | |
call_display_ui = function | |
def update_status(message: str) -> None: | |
global call_display_ui | |
print(message) | |
if call_display_ui is not None: | |
call_display_ui(message) | |
def start() -> None: | |
if roop.globals.headless: | |
print('Headless mode currently unsupported - starting UI!') | |
# faces = extract_face_images(roop.globals.source_path, (False, 0)) | |
# roop.globals.INPUT_FACES.append(faces[roop.globals.source_face_index]) | |
# faces = extract_face_images(roop.globals.target_path, (False, util.has_image_extension(roop.globals.target_path))) | |
# roop.globals.TARGET_FACES.append(faces[roop.globals.target_face_index]) | |
# if 'face_enhancer' in roop.globals.frame_processors: | |
# roop.globals.selected_enhancer = 'GFPGAN' | |
batch_process_regular(None, False, None) | |
def get_processing_plugins(masking_engine): | |
processors = { "faceswap": {}} | |
if masking_engine is not None: | |
processors.update({masking_engine: {}}) | |
if roop.globals.selected_enhancer == 'GFPGAN': | |
processors.update({"gfpgan": {}}) | |
elif roop.globals.selected_enhancer == 'Codeformer': | |
processors.update({"codeformer": {}}) | |
elif roop.globals.selected_enhancer == 'DMDNet': | |
processors.update({"dmdnet": {}}) | |
elif roop.globals.selected_enhancer == 'GPEN': | |
processors.update({"gpen": {}}) | |
elif roop.globals.selected_enhancer == 'Restoreformer++': | |
processors.update({"restoreformer++": {}}) | |
return processors | |
def live_swap(frame, options): | |
global process_mgr | |
if frame is None: | |
return frame | |
if process_mgr is None: | |
process_mgr = ProcessMgr(None) | |
# if len(roop.globals.INPUT_FACESETS) <= selected_index: | |
# selected_index = 0 | |
process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options) | |
newframe = process_mgr.process_frame(frame) | |
if newframe is None: | |
return frame | |
return newframe | |
def batch_process_regular(output_method, files:list[ProcessEntry], masking_engine:str, new_clip_text:str, use_new_method, imagemask, restore_original_mouth, num_swap_steps, progress, selected_index = 0) -> None: | |
global clip_text, process_mgr | |
release_resources() | |
limit_resources() | |
if process_mgr is None: | |
process_mgr = ProcessMgr(progress) | |
mask = imagemask["layers"][0] if imagemask is not None else None | |
if len(roop.globals.INPUT_FACESETS) <= selected_index: | |
selected_index = 0 | |
options = ProcessOptions(get_processing_plugins(masking_engine), roop.globals.distance_threshold, roop.globals.blend_ratio, | |
roop.globals.face_swap_mode, selected_index, new_clip_text, mask, num_swap_steps, | |
roop.globals.subsample_size, False, restore_original_mouth) | |
process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options) | |
batch_process(output_method, files, use_new_method) | |
return | |
def batch_process_with_options(files:list[ProcessEntry], options, progress): | |
global clip_text, process_mgr | |
release_resources() | |
limit_resources() | |
if process_mgr is None: | |
process_mgr = ProcessMgr(progress) | |
process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options) | |
roop.globals.keep_frames = False | |
roop.globals.wait_after_extraction = False | |
roop.globals.skip_audio = False | |
batch_process("Files", files, True) | |
def batch_process(output_method, files:list[ProcessEntry], use_new_method) -> None: | |
global clip_text, process_mgr | |
roop.globals.processing = True | |
# limit threads for some providers | |
max_threads = suggest_execution_threads() | |
if max_threads == 1: | |
roop.globals.execution_threads = 1 | |
imagefiles:list[ProcessEntry] = [] | |
videofiles:list[ProcessEntry] = [] | |
update_status('Sorting videos/images') | |
for index, f in enumerate(files): | |
fullname = f.filename | |
if util.has_image_extension(fullname): | |
destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'.{roop.globals.CFG.output_image_format}') | |
destination = util.replace_template(destination, index=index) | |
pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True) | |
f.finalname = destination | |
imagefiles.append(f) | |
elif util.is_video(fullname) or util.has_extension(fullname, ['gif']): | |
destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'__temp.{roop.globals.CFG.output_video_format}') | |
f.finalname = destination | |
videofiles.append(f) | |
if(len(imagefiles) > 0): | |
update_status('Processing image(s)') | |
origimages = [] | |
fakeimages = [] | |
for f in imagefiles: | |
origimages.append(f.filename) | |
fakeimages.append(f.finalname) | |
process_mgr.run_batch(origimages, fakeimages, roop.globals.execution_threads) | |
origimages.clear() | |
fakeimages.clear() | |
if(len(videofiles) > 0): | |
for index,v in enumerate(videofiles): | |
if not roop.globals.processing: | |
end_processing('Processing stopped!') | |
return | |
fps = v.fps if v.fps > 0 else util.detect_fps(v.filename) | |
if v.endframe == 0: | |
v.endframe = get_video_frame_total(v.filename) | |
is_streaming_only = output_method == "Virtual Camera" | |
if is_streaming_only == False: | |
update_status(f'Creating {os.path.basename(v.finalname)} with {fps} FPS...') | |
start_processing = time() | |
if is_streaming_only == False and roop.globals.keep_frames or not use_new_method: | |
util.create_temp(v.filename) | |
update_status('Extracting frames...') | |
ffmpeg.extract_frames(v.filename,v.startframe,v.endframe, fps) | |
if not roop.globals.processing: | |
end_processing('Processing stopped!') | |
return | |
temp_frame_paths = util.get_temp_frame_paths(v.filename) | |
process_mgr.run_batch(temp_frame_paths, temp_frame_paths, roop.globals.execution_threads) | |
if not roop.globals.processing: | |
end_processing('Processing stopped!') | |
return | |
if roop.globals.wait_after_extraction: | |
extract_path = os.path.dirname(temp_frame_paths[0]) | |
util.open_folder(extract_path) | |
input("Press any key to continue...") | |
print("Resorting frames to create video") | |
util.sort_rename_frames(extract_path) | |
ffmpeg.create_video(v.filename, v.finalname, fps) | |
if not roop.globals.keep_frames: | |
util.delete_temp_frames(temp_frame_paths[0]) | |
else: | |
if util.has_extension(v.filename, ['gif']): | |
skip_audio = True | |
else: | |
skip_audio = roop.globals.skip_audio | |
process_mgr.run_batch_inmem(output_method, v.filename, v.finalname, v.startframe, v.endframe, fps,roop.globals.execution_threads) | |
if not roop.globals.processing: | |
end_processing('Processing stopped!') | |
return | |
video_file_name = v.finalname | |
if os.path.isfile(video_file_name): | |
destination = '' | |
if util.has_extension(v.filename, ['gif']): | |
gifname = util.get_destfilename_from_path(v.filename, roop.globals.output_path, '.gif') | |
destination = util.replace_template(gifname, index=index) | |
pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True) | |
update_status('Creating final GIF') | |
ffmpeg.create_gif_from_video(video_file_name, destination) | |
if os.path.isfile(destination): | |
os.remove(video_file_name) | |
else: | |
skip_audio = roop.globals.skip_audio | |
destination = util.replace_template(video_file_name, index=index) | |
pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True) | |
if not skip_audio: | |
ffmpeg.restore_audio(video_file_name, v.filename, v.startframe, v.endframe, destination) | |
if os.path.isfile(destination): | |
os.remove(video_file_name) | |
else: | |
shutil.move(video_file_name, destination) | |
elif is_streaming_only == False: | |
update_status(f'Failed processing {os.path.basename(v.finalname)}!') | |
elapsed_time = time() - start_processing | |
average_fps = (v.endframe - v.startframe) / elapsed_time | |
update_status(f'\nProcessing {os.path.basename(destination)} took {elapsed_time:.2f} secs, {average_fps:.2f} frames/s') | |
end_processing('Finished') | |
def end_processing(msg:str): | |
update_status(msg) | |
roop.globals.target_folder_path = None | |
release_resources() | |
def destroy() -> None: | |
if roop.globals.target_path: | |
util.clean_temp(roop.globals.target_path) | |
release_resources() | |
sys.exit() | |
def run() -> None: | |
parse_args() | |
if not pre_check(): | |
return | |
roop.globals.CFG = Settings('config.yaml') | |
roop.globals.cuda_device_id = roop.globals.startup_args.cuda_device_id | |
roop.globals.execution_threads = roop.globals.CFG.max_threads | |
roop.globals.video_encoder = roop.globals.CFG.output_video_codec | |
roop.globals.video_quality = roop.globals.CFG.video_quality | |
roop.globals.max_memory = roop.globals.CFG.memory_limit if roop.globals.CFG.memory_limit > 0 else None | |
if roop.globals.startup_args.server_share: | |
roop.globals.CFG.server_share = True | |
main.run() | |