Spaces:
Runtime error
Runtime error
File size: 16,891 Bytes
c47c533 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
#!/usr/bin/env python3
import os
import sys
import shutil
# single thread doubles cuda performance - needs to be set before torch import
if any(arg.startswith('--execution-provider') for arg in sys.argv):
os.environ['OMP_NUM_THREADS'] = '1'
import warnings
from typing import List
import platform
import signal
import torch
import onnxruntime
import pathlib
import argparse
from time import time
import roop.globals
import roop.metadata
import roop.utilities as util
import roop.util_ffmpeg as ffmpeg
import ui.main as main
from settings import Settings
from roop.face_util import extract_face_images
from roop.ProcessEntry import ProcessEntry
from roop.ProcessMgr import ProcessMgr
from roop.ProcessOptions import ProcessOptions
from roop.capturer import get_video_frame_total, release_video
clip_text = None
call_display_ui = None
process_mgr = None
if 'ROCMExecutionProvider' in roop.globals.execution_providers:
del torch
warnings.filterwarnings('ignore', category=FutureWarning, module='insightface')
warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')
def parse_args() -> None:
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
roop.globals.headless = False
program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100))
program.add_argument('--server_share', help='Public server', dest='server_share', action='store_true', default=False)
program.add_argument('--cuda_device_id', help='Index of the cuda gpu to use', dest='cuda_device_id', type=int, default=0)
roop.globals.startup_args = program.parse_args()
# Always enable all processors when using GUI
roop.globals.frame_processors = ['face_swapper', 'face_enhancer']
def encode_execution_providers(execution_providers: List[str]) -> List[str]:
return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
def decode_execution_providers(execution_providers: List[str]) -> List[str]:
list_providers = [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()))
if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)]
try:
for i in range(len(list_providers)):
if list_providers[i] == 'CUDAExecutionProvider':
list_providers[i] = ('CUDAExecutionProvider', {'device_id': roop.globals.cuda_device_id})
torch.cuda.set_device(roop.globals.cuda_device_id)
break
except:
pass
return list_providers
def suggest_max_memory() -> int:
if platform.system().lower() == 'darwin':
return 4
return 16
def suggest_execution_providers() -> List[str]:
return encode_execution_providers(onnxruntime.get_available_providers())
def suggest_execution_threads() -> int:
if 'DmlExecutionProvider' in roop.globals.execution_providers:
return 1
if 'ROCMExecutionProvider' in roop.globals.execution_providers:
return 1
return 8
def limit_resources() -> None:
# limit memory usage
if roop.globals.max_memory:
memory = roop.globals.max_memory * 1024 ** 3
if platform.system().lower() == 'darwin':
memory = roop.globals.max_memory * 1024 ** 6
if platform.system().lower() == 'windows':
import ctypes
kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
else:
import resource
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
def release_resources() -> None:
import gc
global process_mgr
if process_mgr is not None:
process_mgr.release_resources()
process_mgr = None
gc.collect()
# if 'CUDAExecutionProvider' in roop.globals.execution_providers and torch.cuda.is_available():
# with torch.cuda.device('cuda'):
# torch.cuda.empty_cache()
# torch.cuda.ipc_collect()
def pre_check() -> bool:
if sys.version_info < (3, 9):
update_status('Python version is not supported - please upgrade to 3.9 or higher.')
return False
download_directory_path = util.resolve_relative_path('../models')
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx'])
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GFPGANv1.4.onnx'])
util.conditional_download(download_directory_path, ['https://github.com/csxmli2016/DMDNet/releases/download/v1/DMDNet.pth'])
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GPEN-BFR-512.onnx'])
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/restoreformer_plus_plus.onnx'])
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/xseg.onnx'])
download_directory_path = util.resolve_relative_path('../models/CLIP')
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/rd64-uni-refined.pth'])
download_directory_path = util.resolve_relative_path('../models/CodeFormer')
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/CodeFormerv0.1.onnx'])
download_directory_path = util.resolve_relative_path('../models/Frame')
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_artistic.onnx'])
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_stable.onnx'])
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/isnet-general-use.onnx'])
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x4.onnx'])
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x2.onnx'])
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/lsdir_x4.onnx'])
if not shutil.which('ffmpeg'):
update_status('ffmpeg is not installed.')
return True
def set_display_ui(function):
global call_display_ui
call_display_ui = function
def update_status(message: str) -> None:
global call_display_ui
print(message)
if call_display_ui is not None:
call_display_ui(message)
def start() -> None:
if roop.globals.headless:
print('Headless mode currently unsupported - starting UI!')
# faces = extract_face_images(roop.globals.source_path, (False, 0))
# roop.globals.INPUT_FACES.append(faces[roop.globals.source_face_index])
# faces = extract_face_images(roop.globals.target_path, (False, util.has_image_extension(roop.globals.target_path)))
# roop.globals.TARGET_FACES.append(faces[roop.globals.target_face_index])
# if 'face_enhancer' in roop.globals.frame_processors:
# roop.globals.selected_enhancer = 'GFPGAN'
batch_process_regular(None, False, None)
def get_processing_plugins(masking_engine):
processors = { "faceswap": {}}
if masking_engine is not None:
processors.update({masking_engine: {}})
if roop.globals.selected_enhancer == 'GFPGAN':
processors.update({"gfpgan": {}})
elif roop.globals.selected_enhancer == 'Codeformer':
processors.update({"codeformer": {}})
elif roop.globals.selected_enhancer == 'DMDNet':
processors.update({"dmdnet": {}})
elif roop.globals.selected_enhancer == 'GPEN':
processors.update({"gpen": {}})
elif roop.globals.selected_enhancer == 'Restoreformer++':
processors.update({"restoreformer++": {}})
return processors
def live_swap(frame, options):
global process_mgr
if frame is None:
return frame
if process_mgr is None:
process_mgr = ProcessMgr(None)
# if len(roop.globals.INPUT_FACESETS) <= selected_index:
# selected_index = 0
process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
newframe = process_mgr.process_frame(frame)
if newframe is None:
return frame
return newframe
def batch_process_regular(output_method, files:list[ProcessEntry], masking_engine:str, new_clip_text:str, use_new_method, imagemask, restore_original_mouth, num_swap_steps, progress, selected_index = 0) -> None:
global clip_text, process_mgr
release_resources()
limit_resources()
if process_mgr is None:
process_mgr = ProcessMgr(progress)
mask = imagemask["layers"][0] if imagemask is not None else None
if len(roop.globals.INPUT_FACESETS) <= selected_index:
selected_index = 0
options = ProcessOptions(get_processing_plugins(masking_engine), roop.globals.distance_threshold, roop.globals.blend_ratio,
roop.globals.face_swap_mode, selected_index, new_clip_text, mask, num_swap_steps,
roop.globals.subsample_size, False, restore_original_mouth)
process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
batch_process(output_method, files, use_new_method)
return
def batch_process_with_options(files:list[ProcessEntry], options, progress):
global clip_text, process_mgr
release_resources()
limit_resources()
if process_mgr is None:
process_mgr = ProcessMgr(progress)
process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
roop.globals.keep_frames = False
roop.globals.wait_after_extraction = False
roop.globals.skip_audio = False
batch_process("Files", files, True)
def batch_process(output_method, files:list[ProcessEntry], use_new_method) -> None:
global clip_text, process_mgr
roop.globals.processing = True
# limit threads for some providers
max_threads = suggest_execution_threads()
if max_threads == 1:
roop.globals.execution_threads = 1
imagefiles:list[ProcessEntry] = []
videofiles:list[ProcessEntry] = []
update_status('Sorting videos/images')
for index, f in enumerate(files):
fullname = f.filename
if util.has_image_extension(fullname):
destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'.{roop.globals.CFG.output_image_format}')
destination = util.replace_template(destination, index=index)
pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
f.finalname = destination
imagefiles.append(f)
elif util.is_video(fullname) or util.has_extension(fullname, ['gif']):
destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'__temp.{roop.globals.CFG.output_video_format}')
f.finalname = destination
videofiles.append(f)
if(len(imagefiles) > 0):
update_status('Processing image(s)')
origimages = []
fakeimages = []
for f in imagefiles:
origimages.append(f.filename)
fakeimages.append(f.finalname)
process_mgr.run_batch(origimages, fakeimages, roop.globals.execution_threads)
origimages.clear()
fakeimages.clear()
if(len(videofiles) > 0):
for index,v in enumerate(videofiles):
if not roop.globals.processing:
end_processing('Processing stopped!')
return
fps = v.fps if v.fps > 0 else util.detect_fps(v.filename)
if v.endframe == 0:
v.endframe = get_video_frame_total(v.filename)
is_streaming_only = output_method == "Virtual Camera"
if is_streaming_only == False:
update_status(f'Creating {os.path.basename(v.finalname)} with {fps} FPS...')
start_processing = time()
if is_streaming_only == False and roop.globals.keep_frames or not use_new_method:
util.create_temp(v.filename)
update_status('Extracting frames...')
ffmpeg.extract_frames(v.filename,v.startframe,v.endframe, fps)
if not roop.globals.processing:
end_processing('Processing stopped!')
return
temp_frame_paths = util.get_temp_frame_paths(v.filename)
process_mgr.run_batch(temp_frame_paths, temp_frame_paths, roop.globals.execution_threads)
if not roop.globals.processing:
end_processing('Processing stopped!')
return
if roop.globals.wait_after_extraction:
extract_path = os.path.dirname(temp_frame_paths[0])
util.open_folder(extract_path)
input("Press any key to continue...")
print("Resorting frames to create video")
util.sort_rename_frames(extract_path)
ffmpeg.create_video(v.filename, v.finalname, fps)
if not roop.globals.keep_frames:
util.delete_temp_frames(temp_frame_paths[0])
else:
if util.has_extension(v.filename, ['gif']):
skip_audio = True
else:
skip_audio = roop.globals.skip_audio
process_mgr.run_batch_inmem(output_method, v.filename, v.finalname, v.startframe, v.endframe, fps,roop.globals.execution_threads)
if not roop.globals.processing:
end_processing('Processing stopped!')
return
video_file_name = v.finalname
if os.path.isfile(video_file_name):
destination = ''
if util.has_extension(v.filename, ['gif']):
gifname = util.get_destfilename_from_path(v.filename, roop.globals.output_path, '.gif')
destination = util.replace_template(gifname, index=index)
pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
update_status('Creating final GIF')
ffmpeg.create_gif_from_video(video_file_name, destination)
if os.path.isfile(destination):
os.remove(video_file_name)
else:
skip_audio = roop.globals.skip_audio
destination = util.replace_template(video_file_name, index=index)
pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
if not skip_audio:
ffmpeg.restore_audio(video_file_name, v.filename, v.startframe, v.endframe, destination)
if os.path.isfile(destination):
os.remove(video_file_name)
else:
shutil.move(video_file_name, destination)
elif is_streaming_only == False:
update_status(f'Failed processing {os.path.basename(v.finalname)}!')
elapsed_time = time() - start_processing
average_fps = (v.endframe - v.startframe) / elapsed_time
update_status(f'\nProcessing {os.path.basename(destination)} took {elapsed_time:.2f} secs, {average_fps:.2f} frames/s')
end_processing('Finished')
def end_processing(msg:str):
update_status(msg)
roop.globals.target_folder_path = None
release_resources()
def destroy() -> None:
if roop.globals.target_path:
util.clean_temp(roop.globals.target_path)
release_resources()
sys.exit()
def run() -> None:
parse_args()
if not pre_check():
return
roop.globals.CFG = Settings('config.yaml')
roop.globals.cuda_device_id = roop.globals.startup_args.cuda_device_id
roop.globals.execution_threads = roop.globals.CFG.max_threads
roop.globals.video_encoder = roop.globals.CFG.output_video_codec
roop.globals.video_quality = roop.globals.CFG.video_quality
roop.globals.max_memory = roop.globals.CFG.memory_limit if roop.globals.CFG.memory_limit > 0 else None
if roop.globals.startup_args.server_share:
roop.globals.CFG.server_share = True
main.run()
|