Spaces:
Runtime error
Runtime error
import streamlit as st | |
import streamlit.components.v1 as components | |
import pyvista as pv | |
from pyvista import examples | |
import numpy as np | |
from dcgan import DCGAN3D_G | |
import torch | |
import requests | |
url = "https://raw.githubusercontent.com/LukasMosser/PorousMediaGan/raw/master/checkpoints/berea/berea_generator_epoch_24.pth" | |
# If repo is private - we need to add a token in header: | |
resp = requests.get(url) | |
print(resp.status_code) | |
pv.set_plot_theme("document") | |
pl = pv.Plotter(shape=(1, 1), | |
window_size=(800, 800)) | |
netG = DCGAN3D_G(64, 512, 1, 32, 1) | |
netG.load_state_dict(torch.load("./src/berea_generator_epoch_24.pth")) | |
z = torch.randn(1, 512, 5, 5, 5) | |
with torch.no_grad(): | |
X = netG(z) | |
print(X.size()) | |
print(X.min(), X.max()) | |
st.image((X[0, 0, 32].numpy()+1)/2, output_format="png") | |
""" | |
data = examples.load_channels() | |
channels = data.threshold([0.9, 1.1]) | |
print(channels) | |
bodies = channels.split_bodies() | |
# Now remove all bodies with a small volume | |
for key in bodies.keys(): | |
b = bodies[key] | |
vol = b.volume | |
if vol < 1000.0: | |
del bodies[key] | |
continue | |
# Now lets add a volume array to all blocks | |
b.cell_data["TOTAL VOLUME"] = np.full(b.n_cells, vol) | |
for i, body in enumerate(bodies): | |
print(f"Body {i:02d} volume: {body.volume:.3f}") | |
pl.add_mesh(bodies) | |
pl.export_html('pyvista.html') | |
st.header("test html import") | |
view_width = 800 | |
view_height = 800 | |
HtmlFile = open("pyvista.html", 'r', encoding='utf-8') | |
source_code = HtmlFile.read() | |
components.html(source_code, width=view_width, height=view_height) | |
#snippet = embed.embed_snippet(views=view(reader.GetOutput())) | |
#html = embed.html_template.format(title="", snippet=snippet) | |
#components.html(html, width=view_width, height=view_height)""" |