lmoss commited on
Commit
a577b73
·
1 Parent(s): 8c8b3fb

added initial

Browse files
Files changed (3) hide show
  1. app.py +59 -0
  2. dcgan.py +50 -0
  3. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import streamlit.components.v1 as components
3
+ import pyvista as pv
4
+ from pyvista import examples
5
+ import numpy as np
6
+ from dcgan import DCGAN3D_G
7
+ import torch
8
+ import requests
9
+
10
+ url = "https://raw.githubusercontent.com/LukasMosser/PorousMediaGan/raw/master/checkpoints/berea/berea_generator_epoch_24.pth"
11
+
12
+ # If repo is private - we need to add a token in header:
13
+ resp = requests.get(url)
14
+ print(resp.status_code)
15
+
16
+ pv.set_plot_theme("document")
17
+ pl = pv.Plotter(shape=(1, 1),
18
+ window_size=(800, 800))
19
+
20
+ netG = DCGAN3D_G(64, 512, 1, 32, 1)
21
+ netG.load_state_dict(torch.load("./src/berea_generator_epoch_24.pth"))
22
+ z = torch.randn(1, 512, 5, 5, 5)
23
+ with torch.no_grad():
24
+ X = netG(z)
25
+ print(X.size())
26
+ print(X.min(), X.max())
27
+ st.image((X[0, 0, 32].numpy()+1)/2, output_format="png")
28
+ """
29
+ data = examples.load_channels()
30
+ channels = data.threshold([0.9, 1.1])
31
+ print(channels)
32
+ bodies = channels.split_bodies()
33
+ # Now remove all bodies with a small volume
34
+ for key in bodies.keys():
35
+ b = bodies[key]
36
+ vol = b.volume
37
+ if vol < 1000.0:
38
+ del bodies[key]
39
+ continue
40
+ # Now lets add a volume array to all blocks
41
+ b.cell_data["TOTAL VOLUME"] = np.full(b.n_cells, vol)
42
+
43
+ for i, body in enumerate(bodies):
44
+ print(f"Body {i:02d} volume: {body.volume:.3f}")
45
+
46
+ pl.add_mesh(bodies)
47
+ pl.export_html('pyvista.html')
48
+
49
+ st.header("test html import")
50
+ view_width = 800
51
+ view_height = 800
52
+ HtmlFile = open("pyvista.html", 'r', encoding='utf-8')
53
+ source_code = HtmlFile.read()
54
+
55
+ components.html(source_code, width=view_width, height=view_height)
56
+
57
+ #snippet = embed.embed_snippet(views=view(reader.GetOutput()))
58
+ #html = embed.html_template.format(title="", snippet=snippet)
59
+ #components.html(html, width=view_width, height=view_height)"""
dcgan.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+
4
+ class DCGAN3D_G(nn.Module):
5
+ def __init__(self, isize, nz, nc, ngf, ngpu, n_extra_layers=0):
6
+ super(DCGAN3D_G, self).__init__()
7
+ self.ngpu = ngpu
8
+ assert isize % 16 == 0, "isize has to be a multiple of 16"
9
+
10
+ cngf, tisize = ngf // 2, 4
11
+ while tisize != isize:
12
+ cngf = cngf * 2
13
+ tisize = tisize * 2
14
+
15
+ main = nn.Sequential(
16
+ # input is Z, going into a convolution
17
+ nn.ConvTranspose3d(nz, cngf, 4, 1, 0, bias=False),
18
+ nn.BatchNorm3d(cngf),
19
+ nn.ReLU(True),
20
+ )
21
+
22
+ i, csize, cndf = 3, 4, cngf
23
+ while csize < isize // 2:
24
+ main.add_module(str(i),
25
+ nn.ConvTranspose3d(cngf, cngf // 2, 4, 2, 1, bias=False))
26
+ main.add_module(str(i + 1),
27
+ nn.BatchNorm3d(cngf // 2))
28
+ main.add_module(str(i + 2),
29
+ nn.ReLU(True))
30
+ i += 3
31
+ cngf = cngf // 2
32
+ csize = csize * 2
33
+
34
+ # Extra layers
35
+ for t in range(n_extra_layers):
36
+ main.add_module(str(i),
37
+ nn.Conv3d(cngf, cngf, 3, 1, 1, bias=False))
38
+ main.add_module(str(i + 1),
39
+ nn.BatchNorm3d(cngf))
40
+ main.add_module(str(i + 2),
41
+ nn.ReLU(True))
42
+ i += 3
43
+
44
+ main.add_module(str(i),
45
+ nn.ConvTranspose3d(cngf, nc, 4, 2, 1, bias=False))
46
+ main.add_module(str(i + 1), nn.Tanh())
47
+ self.main = main
48
+
49
+ def forward(self, input):
50
+ return self.main(input)
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ pyvista
2
+ streamlit
3
+ pythreejs
4
+ matplotlib
5
+ torch==1.10.1+cu113
6
+ torchvision==0.11.2+cu113
7
+ torchaudio==0.10.1+cu113
8
+ -f https://download.pytorch.org/whl/cu113/torch_stable.html