Spaces:
Runtime error
Runtime error
lmoss
commited on
Commit
·
a577b73
1
Parent(s):
8c8b3fb
added initial
Browse files- app.py +59 -0
- dcgan.py +50 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import streamlit.components.v1 as components
|
3 |
+
import pyvista as pv
|
4 |
+
from pyvista import examples
|
5 |
+
import numpy as np
|
6 |
+
from dcgan import DCGAN3D_G
|
7 |
+
import torch
|
8 |
+
import requests
|
9 |
+
|
10 |
+
url = "https://raw.githubusercontent.com/LukasMosser/PorousMediaGan/raw/master/checkpoints/berea/berea_generator_epoch_24.pth"
|
11 |
+
|
12 |
+
# If repo is private - we need to add a token in header:
|
13 |
+
resp = requests.get(url)
|
14 |
+
print(resp.status_code)
|
15 |
+
|
16 |
+
pv.set_plot_theme("document")
|
17 |
+
pl = pv.Plotter(shape=(1, 1),
|
18 |
+
window_size=(800, 800))
|
19 |
+
|
20 |
+
netG = DCGAN3D_G(64, 512, 1, 32, 1)
|
21 |
+
netG.load_state_dict(torch.load("./src/berea_generator_epoch_24.pth"))
|
22 |
+
z = torch.randn(1, 512, 5, 5, 5)
|
23 |
+
with torch.no_grad():
|
24 |
+
X = netG(z)
|
25 |
+
print(X.size())
|
26 |
+
print(X.min(), X.max())
|
27 |
+
st.image((X[0, 0, 32].numpy()+1)/2, output_format="png")
|
28 |
+
"""
|
29 |
+
data = examples.load_channels()
|
30 |
+
channels = data.threshold([0.9, 1.1])
|
31 |
+
print(channels)
|
32 |
+
bodies = channels.split_bodies()
|
33 |
+
# Now remove all bodies with a small volume
|
34 |
+
for key in bodies.keys():
|
35 |
+
b = bodies[key]
|
36 |
+
vol = b.volume
|
37 |
+
if vol < 1000.0:
|
38 |
+
del bodies[key]
|
39 |
+
continue
|
40 |
+
# Now lets add a volume array to all blocks
|
41 |
+
b.cell_data["TOTAL VOLUME"] = np.full(b.n_cells, vol)
|
42 |
+
|
43 |
+
for i, body in enumerate(bodies):
|
44 |
+
print(f"Body {i:02d} volume: {body.volume:.3f}")
|
45 |
+
|
46 |
+
pl.add_mesh(bodies)
|
47 |
+
pl.export_html('pyvista.html')
|
48 |
+
|
49 |
+
st.header("test html import")
|
50 |
+
view_width = 800
|
51 |
+
view_height = 800
|
52 |
+
HtmlFile = open("pyvista.html", 'r', encoding='utf-8')
|
53 |
+
source_code = HtmlFile.read()
|
54 |
+
|
55 |
+
components.html(source_code, width=view_width, height=view_height)
|
56 |
+
|
57 |
+
#snippet = embed.embed_snippet(views=view(reader.GetOutput()))
|
58 |
+
#html = embed.html_template.format(title="", snippet=snippet)
|
59 |
+
#components.html(html, width=view_width, height=view_height)"""
|
dcgan.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
|
4 |
+
class DCGAN3D_G(nn.Module):
|
5 |
+
def __init__(self, isize, nz, nc, ngf, ngpu, n_extra_layers=0):
|
6 |
+
super(DCGAN3D_G, self).__init__()
|
7 |
+
self.ngpu = ngpu
|
8 |
+
assert isize % 16 == 0, "isize has to be a multiple of 16"
|
9 |
+
|
10 |
+
cngf, tisize = ngf // 2, 4
|
11 |
+
while tisize != isize:
|
12 |
+
cngf = cngf * 2
|
13 |
+
tisize = tisize * 2
|
14 |
+
|
15 |
+
main = nn.Sequential(
|
16 |
+
# input is Z, going into a convolution
|
17 |
+
nn.ConvTranspose3d(nz, cngf, 4, 1, 0, bias=False),
|
18 |
+
nn.BatchNorm3d(cngf),
|
19 |
+
nn.ReLU(True),
|
20 |
+
)
|
21 |
+
|
22 |
+
i, csize, cndf = 3, 4, cngf
|
23 |
+
while csize < isize // 2:
|
24 |
+
main.add_module(str(i),
|
25 |
+
nn.ConvTranspose3d(cngf, cngf // 2, 4, 2, 1, bias=False))
|
26 |
+
main.add_module(str(i + 1),
|
27 |
+
nn.BatchNorm3d(cngf // 2))
|
28 |
+
main.add_module(str(i + 2),
|
29 |
+
nn.ReLU(True))
|
30 |
+
i += 3
|
31 |
+
cngf = cngf // 2
|
32 |
+
csize = csize * 2
|
33 |
+
|
34 |
+
# Extra layers
|
35 |
+
for t in range(n_extra_layers):
|
36 |
+
main.add_module(str(i),
|
37 |
+
nn.Conv3d(cngf, cngf, 3, 1, 1, bias=False))
|
38 |
+
main.add_module(str(i + 1),
|
39 |
+
nn.BatchNorm3d(cngf))
|
40 |
+
main.add_module(str(i + 2),
|
41 |
+
nn.ReLU(True))
|
42 |
+
i += 3
|
43 |
+
|
44 |
+
main.add_module(str(i),
|
45 |
+
nn.ConvTranspose3d(cngf, nc, 4, 2, 1, bias=False))
|
46 |
+
main.add_module(str(i + 1), nn.Tanh())
|
47 |
+
self.main = main
|
48 |
+
|
49 |
+
def forward(self, input):
|
50 |
+
return self.main(input)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pyvista
|
2 |
+
streamlit
|
3 |
+
pythreejs
|
4 |
+
matplotlib
|
5 |
+
torch==1.10.1+cu113
|
6 |
+
torchvision==0.11.2+cu113
|
7 |
+
torchaudio==0.10.1+cu113
|
8 |
+
-f https://download.pytorch.org/whl/cu113/torch_stable.html
|