Elite-text-gen-web / docs /Low-VRAM-guide.md
pikto's picture
Duplicate from algovenus/text-generation-webui
82fea12
|
raw
history blame
1.35 kB

If you GPU is not large enough to fit a 16-bit model, try these in the following order:

Load the model in 8-bit mode

python server.py --load-in-8bit

Load the model in 4-bit mode

python server.py --load-in-4bit

Split the model across your GPU and CPU

python server.py --auto-devices

If you can load the model with this command but it runs out of memory when you try to generate text, try increasingly limiting the amount of memory allocated to the GPU until the error stops happening:

python server.py --auto-devices --gpu-memory 10
python server.py --auto-devices --gpu-memory 9
python server.py --auto-devices --gpu-memory 8
...

where the number is in GiB.

For finer control, you can also specify the unit in MiB explicitly:

python server.py --auto-devices --gpu-memory 8722MiB
python server.py --auto-devices --gpu-memory 4725MiB
python server.py --auto-devices --gpu-memory 3500MiB
...

Send layers to a disk cache

As a desperate last measure, you can split the model across your GPU, CPU, and disk:

python server.py --auto-devices --disk

With this, I am able to load a 30b model into my RTX 3090, but it takes 10 seconds to generate 1 word.

DeepSpeed (experimental)

An experimental alternative to all of the above is to use DeepSpeed: guide.