LAMM / app.py
openlamm's picture
init LAMM
94da716
raw
history blame
7.38 kB
from transformers import AutoModel, AutoTokenizer
from copy import deepcopy
import os
import ipdb
import gradio as gr
import mdtex2html
from model.openlamm import LAMMPEFTModel
import torch
import json
# init the model
args = {
'model': 'openllama_peft',
'imagebind_ckpt_path': '../model_zoo/imagebind_ckpt',
'vicuna_ckpt_path': '../model_zoo/vicuna_ckpt/13b_v0',
'delta_ckpt_path': './pretrained_ckpt/lamm98k/pytorch_model.pt',
'stage': 1,
'max_tgt_len': 128,
'lora_r': 32,
'lora_alpha': 32,
'lora_dropout': 0.1,
'lora_target_modules': ['q_proj', 'k_proj', 'v_proj', 'o_proj'],
'vision_type': 'image',
'vision_feature_type': 'local',
'num_vision_token': 256,
'encoder_pretrain': 'clip',
'system_header': True,
}
model = LAMMPEFTModel(**args)
delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu'))
model.load_state_dict(delta_ckpt, strict=False)
model = model.eval().half().cuda()
print(f'[!] init the 13b model over ...')
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def re_predict(
input,
image_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
):
# drop the latest query and answers and generate again
q, a = history.pop()
chatbot.pop()
return predict(q, image_path, chatbot, max_length, top_p, temperature, history, modality_cache)
def predict(
input,
image_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
):
if image_path is None: #
return [(input, "There is no input data provided! Please upload your data and start the conversation.")]
else:
print(f'[!] image path: {image_path}\n') # [!] audio path: {audio_path}\n[!] video path: {video_path}\n[!] thermal path: {thermal_path}')
# prepare the prompt
prompt_text = ''
for idx, (q, a) in enumerate(history):
if idx == 0:
prompt_text += f'{q}\n### Assistant: {a}\n###'
else:
prompt_text += f' Human: {q}\n### Assistant: {a}\n###'
if len(history) == 0:
prompt_text += f'{input}'
else:
prompt_text += f' Human: {input}'
response = model.generate({
'prompt': prompt_text,
'image_paths': [image_path] if image_path else [],
# 'audio_paths': [audio_path] if audio_path else [],
# 'video_paths': [video_path] if video_path else [],
# 'thermal_paths': [thermal_path] if thermal_path else [],
'top_p': top_p,
'temperature': temperature,
'max_tgt_len': max_length,
'modality_embeds': modality_cache
})
chatbot.append((parse_text(input), parse_text(response)))
history.append((input, response))
return chatbot, history, modality_cache
def reset_user_input():
return gr.update(value='')
def reset_dialog():
return [], []
def reset_state():
return None, None, None, None, [], [], []
with gr.Blocks(scale=4) as demo:
gr.HTML("""<h1 align="center">PandaGPT</h1>""")
with gr.Row(scale=4):
with gr.Column(scale=1):
image_path = gr.Image(type="filepath", label="Image", value=None)
# with gr.Column(scale=1):
# audio_path = gr.Audio(type="filepath", label="Audio", value=None)
# with gr.Column(scale=1):
# video_path = gr.Video(type='file', label="Video")
# with gr.Column(scale=1):
# thermal_path = gr.Image(type="filepath", label="Thermal Image", value=None)
chatbot = gr.Chatbot().style(height=300)
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False)
with gr.Column(min_width=32, scale=1):
with gr.Row(scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Row(scale=1):
resubmitBtn = gr.Button("Resubmit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 400, value=256, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.01, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=1.0, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
modality_cache = gr.State([])
submitBtn.click(
predict, [
user_input,
image_path,
# audio_path,
# video_path,
# thermal_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
], [
chatbot,
history,
modality_cache
],
show_progress=True
)
resubmitBtn.click(
re_predict, [
user_input,
image_path,
# audio_path,
# video_path,
# thermal_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
], [
chatbot,
history,
modality_cache
],
show_progress=True
)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[
image_path,
# audio_path,
# video_path,
# thermal_path,
chatbot,
history,
modality_cache
], show_progress=True)
demo.queue().launch(share=False, inbrowser=True, server_name='0.0.0.0', server_port=10050)