|
from transformers import AutoModel, AutoTokenizer |
|
from copy import deepcopy |
|
import os |
|
import ipdb |
|
import gradio as gr |
|
import mdtex2html |
|
from model.openlamm import LAMMPEFTModel |
|
import torch |
|
import json |
|
|
|
|
|
args = { |
|
'model': 'openllama_peft', |
|
'imagebind_ckpt_path': '../model_zoo/imagebind_ckpt', |
|
'vicuna_ckpt_path': '../model_zoo/vicuna_ckpt/13b_v0', |
|
'delta_ckpt_path': './pretrained_ckpt/lamm98k/pytorch_model.pt', |
|
'stage': 1, |
|
'max_tgt_len': 128, |
|
'lora_r': 32, |
|
'lora_alpha': 32, |
|
'lora_dropout': 0.1, |
|
'lora_target_modules': ['q_proj', 'k_proj', 'v_proj', 'o_proj'], |
|
'vision_type': 'image', |
|
'vision_feature_type': 'local', |
|
'num_vision_token': 256, |
|
'encoder_pretrain': 'clip', |
|
'system_header': True, |
|
} |
|
|
|
model = LAMMPEFTModel(**args) |
|
delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu')) |
|
model.load_state_dict(delta_ckpt, strict=False) |
|
model = model.eval().half().cuda() |
|
print(f'[!] init the 13b model over ...') |
|
|
|
"""Override Chatbot.postprocess""" |
|
|
|
|
|
def postprocess(self, y): |
|
if y is None: |
|
return [] |
|
for i, (message, response) in enumerate(y): |
|
y[i] = ( |
|
None if message is None else mdtex2html.convert((message)), |
|
None if response is None else mdtex2html.convert(response), |
|
) |
|
return y |
|
|
|
|
|
gr.Chatbot.postprocess = postprocess |
|
|
|
|
|
def parse_text(text): |
|
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" |
|
lines = text.split("\n") |
|
lines = [line for line in lines if line != ""] |
|
count = 0 |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
count += 1 |
|
items = line.split('`') |
|
if count % 2 == 1: |
|
lines[i] = f'<pre><code class="language-{items[-1]}">' |
|
else: |
|
lines[i] = f'<br></code></pre>' |
|
else: |
|
if i > 0: |
|
if count % 2 == 1: |
|
line = line.replace("`", "\`") |
|
line = line.replace("<", "<") |
|
line = line.replace(">", ">") |
|
line = line.replace(" ", " ") |
|
line = line.replace("*", "*") |
|
line = line.replace("_", "_") |
|
line = line.replace("-", "-") |
|
line = line.replace(".", ".") |
|
line = line.replace("!", "!") |
|
line = line.replace("(", "(") |
|
line = line.replace(")", ")") |
|
line = line.replace("$", "$") |
|
lines[i] = "<br>"+line |
|
text = "".join(lines) |
|
return text |
|
|
|
|
|
def re_predict( |
|
input, |
|
image_path, |
|
chatbot, |
|
max_length, |
|
top_p, |
|
temperature, |
|
history, |
|
modality_cache, |
|
): |
|
|
|
q, a = history.pop() |
|
chatbot.pop() |
|
return predict(q, image_path, chatbot, max_length, top_p, temperature, history, modality_cache) |
|
|
|
|
|
def predict( |
|
input, |
|
image_path, |
|
chatbot, |
|
max_length, |
|
top_p, |
|
temperature, |
|
history, |
|
modality_cache, |
|
): |
|
if image_path is None: |
|
return [(input, "There is no input data provided! Please upload your data and start the conversation.")] |
|
else: |
|
print(f'[!] image path: {image_path}\n') |
|
|
|
|
|
prompt_text = '' |
|
for idx, (q, a) in enumerate(history): |
|
if idx == 0: |
|
prompt_text += f'{q}\n### Assistant: {a}\n###' |
|
else: |
|
prompt_text += f' Human: {q}\n### Assistant: {a}\n###' |
|
if len(history) == 0: |
|
prompt_text += f'{input}' |
|
else: |
|
prompt_text += f' Human: {input}' |
|
|
|
response = model.generate({ |
|
'prompt': prompt_text, |
|
'image_paths': [image_path] if image_path else [], |
|
|
|
|
|
|
|
'top_p': top_p, |
|
'temperature': temperature, |
|
'max_tgt_len': max_length, |
|
'modality_embeds': modality_cache |
|
}) |
|
chatbot.append((parse_text(input), parse_text(response))) |
|
history.append((input, response)) |
|
return chatbot, history, modality_cache |
|
|
|
|
|
def reset_user_input(): |
|
return gr.update(value='') |
|
|
|
def reset_dialog(): |
|
return [], [] |
|
|
|
def reset_state(): |
|
return None, None, None, None, [], [], [] |
|
|
|
|
|
with gr.Blocks(scale=4) as demo: |
|
gr.HTML("""<h1 align="center">PandaGPT</h1>""") |
|
|
|
with gr.Row(scale=4): |
|
with gr.Column(scale=1): |
|
image_path = gr.Image(type="filepath", label="Image", value=None) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chatbot = gr.Chatbot().style(height=300) |
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
with gr.Column(scale=12): |
|
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False) |
|
with gr.Column(min_width=32, scale=1): |
|
with gr.Row(scale=1): |
|
submitBtn = gr.Button("Submit", variant="primary") |
|
with gr.Row(scale=1): |
|
resubmitBtn = gr.Button("Resubmit", variant="primary") |
|
with gr.Column(scale=1): |
|
emptyBtn = gr.Button("Clear History") |
|
max_length = gr.Slider(0, 400, value=256, step=1.0, label="Maximum length", interactive=True) |
|
top_p = gr.Slider(0, 1, value=0.01, step=0.01, label="Top P", interactive=True) |
|
temperature = gr.Slider(0, 1, value=1.0, step=0.01, label="Temperature", interactive=True) |
|
|
|
history = gr.State([]) |
|
modality_cache = gr.State([]) |
|
|
|
submitBtn.click( |
|
predict, [ |
|
user_input, |
|
image_path, |
|
|
|
|
|
|
|
chatbot, |
|
max_length, |
|
top_p, |
|
temperature, |
|
history, |
|
modality_cache, |
|
], [ |
|
chatbot, |
|
history, |
|
modality_cache |
|
], |
|
show_progress=True |
|
) |
|
|
|
resubmitBtn.click( |
|
re_predict, [ |
|
user_input, |
|
image_path, |
|
|
|
|
|
|
|
chatbot, |
|
max_length, |
|
top_p, |
|
temperature, |
|
history, |
|
modality_cache, |
|
], [ |
|
chatbot, |
|
history, |
|
modality_cache |
|
], |
|
show_progress=True |
|
) |
|
|
|
submitBtn.click(reset_user_input, [], [user_input]) |
|
emptyBtn.click(reset_state, outputs=[ |
|
image_path, |
|
|
|
|
|
|
|
chatbot, |
|
history, |
|
modality_cache |
|
], show_progress=True) |
|
|
|
demo.queue().launch(share=False, inbrowser=True, server_name='0.0.0.0', server_port=10050) |
|
|