from transformers import AutoModel, AutoTokenizer
from copy import deepcopy
import os
import ipdb
import gradio as gr
import mdtex2html
from model.openlamm import LAMMPEFTModel
import torch
import json
# init the model
args = {
'model': 'openllama_peft',
'imagebind_ckpt_path': '../model_zoo/imagebind_ckpt',
'vicuna_ckpt_path': '../model_zoo/vicuna_ckpt/13b_v0',
'delta_ckpt_path': './pretrained_ckpt/lamm98k/pytorch_model.pt',
'stage': 1,
'max_tgt_len': 128,
'lora_r': 32,
'lora_alpha': 32,
'lora_dropout': 0.1,
'lora_target_modules': ['q_proj', 'k_proj', 'v_proj', 'o_proj'],
'vision_type': 'image',
'vision_feature_type': 'local',
'num_vision_token': 256,
'encoder_pretrain': 'clip',
'system_header': True,
}
model = LAMMPEFTModel(**args)
delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu'))
model.load_state_dict(delta_ckpt, strict=False)
model = model.eval().half().cuda()
print(f'[!] init the 13b model over ...')
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'
'
else:
lines[i] = f'
'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "
"+line
text = "".join(lines)
return text
def re_predict(
input,
image_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
):
# drop the latest query and answers and generate again
q, a = history.pop()
chatbot.pop()
return predict(q, image_path, chatbot, max_length, top_p, temperature, history, modality_cache)
def predict(
input,
image_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
):
if image_path is None: #
return [(input, "There is no input data provided! Please upload your data and start the conversation.")]
else:
print(f'[!] image path: {image_path}\n') # [!] audio path: {audio_path}\n[!] video path: {video_path}\n[!] thermal path: {thermal_path}')
# prepare the prompt
prompt_text = ''
for idx, (q, a) in enumerate(history):
if idx == 0:
prompt_text += f'{q}\n### Assistant: {a}\n###'
else:
prompt_text += f' Human: {q}\n### Assistant: {a}\n###'
if len(history) == 0:
prompt_text += f'{input}'
else:
prompt_text += f' Human: {input}'
response = model.generate({
'prompt': prompt_text,
'image_paths': [image_path] if image_path else [],
# 'audio_paths': [audio_path] if audio_path else [],
# 'video_paths': [video_path] if video_path else [],
# 'thermal_paths': [thermal_path] if thermal_path else [],
'top_p': top_p,
'temperature': temperature,
'max_tgt_len': max_length,
'modality_embeds': modality_cache
})
chatbot.append((parse_text(input), parse_text(response)))
history.append((input, response))
return chatbot, history, modality_cache
def reset_user_input():
return gr.update(value='')
def reset_dialog():
return [], []
def reset_state():
return None, None, None, None, [], [], []
with gr.Blocks(scale=4) as demo:
gr.HTML("""PandaGPT
""")
with gr.Row(scale=4):
with gr.Column(scale=1):
image_path = gr.Image(type="filepath", label="Image", value=None)
# with gr.Column(scale=1):
# audio_path = gr.Audio(type="filepath", label="Audio", value=None)
# with gr.Column(scale=1):
# video_path = gr.Video(type='file', label="Video")
# with gr.Column(scale=1):
# thermal_path = gr.Image(type="filepath", label="Thermal Image", value=None)
chatbot = gr.Chatbot().style(height=300)
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False)
with gr.Column(min_width=32, scale=1):
with gr.Row(scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Row(scale=1):
resubmitBtn = gr.Button("Resubmit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 400, value=256, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.01, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=1.0, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
modality_cache = gr.State([])
submitBtn.click(
predict, [
user_input,
image_path,
# audio_path,
# video_path,
# thermal_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
], [
chatbot,
history,
modality_cache
],
show_progress=True
)
resubmitBtn.click(
re_predict, [
user_input,
image_path,
# audio_path,
# video_path,
# thermal_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
], [
chatbot,
history,
modality_cache
],
show_progress=True
)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[
image_path,
# audio_path,
# video_path,
# thermal_path,
chatbot,
history,
modality_cache
], show_progress=True)
demo.queue().launch(share=False, inbrowser=True, server_name='0.0.0.0', server_port=10050)