File size: 13,046 Bytes
9f54a3b
71ec4a8
9f54a3b
0e00146
a645649
c50f71f
9d150a9
a9c7401
a645649
 
71ec4a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8092b5a
71ec4a8
a645649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fcff87
9ad5122
 
7fcff87
c438b94
7fcff87
c438b94
 
0957448
 
 
 
7fcff87
9ad5122
45b3e7d
9ad5122
 
c50f71f
9ad5122
c50f71f
 
 
9ad5122
a645649
9ad5122
0957448
9ad5122
a645649
 
9ad5122
c50f71f
 
9ad5122
c50f71f
9ad5122
 
 
 
 
45b3e7d
0957448
7fcff87
9104631
65e9088
 
 
 
 
 
 
 
 
 
 
 
45b3e7d
65e9088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9104631
 
 
9ad5122
9104631
 
 
 
 
 
 
 
9ad5122
9104631
 
 
 
 
 
9ad5122
9104631
 
 
 
 
 
a645649
9104631
 
 
a645649
9104631
 
 
 
 
 
 
 
 
 
 
 
 
9ad5122
9104631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad5122
9104631
 
 
 
 
 
 
 
9ad5122
9104631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad5122
9104631
9ad5122
9104631
 
 
 
 
 
 
 
 
9ad5122
9104631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad5122
9104631
a645649
9104631
 
 
65eab1d
71ec4a8
 
 
 
 
9104631
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import streamlit as st
import requests
import os
import json
import pandas as pd
import plotly.graph_objects as go
import time

# Function to call the Together AI model for the initial analysis
def call_ai_model_initial(all_message):
    url = "https://api.together.xyz/v1/chat/completions"
    payload = {
        "model": "NousResearch/Nous-Hermes-2-Yi-34B",
        "temperature": 1.05,
        "top_p": 0.9,
        "top_k": 50,
        "repetition_penalty": 1,
        "n": 1,
        "messages": [{"role": "user", "content": all_message}],
        "stream_tokens": True,
    }

    TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
    if TOGETHER_API_KEY is None:
        raise ValueError("TOGETHER_API_KEY environment variable not set.")
    
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "Authorization": f"Bearer {TOGETHER_API_KEY}",
    }

    response = requests.post(url, json=payload, headers=headers, stream=True)
    response.raise_for_status()  # Ensure HTTP request was successful

    return response

# Function to call the Together AI model for analyzing the text and computing performance score
def call_ai_model_analysis(analysis_text):
    url = "https://api.together.xyz/v1/chat/completions"
    payload = {
        "model": "NousResearch/Nous-Hermes-2-Yi-34B",
        "temperature": 1.05,
        "top_p": 0.9,
        "top_k": 50,
        "repetition_penalty": 1,
        "n": 1,
        "messages": [{"role": "user", "content": analysis_text}],
        "stream_tokens": True,
    }

    TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
    if TOGETHER_API_KEY is None:
        raise ValueError("TOGETHER_API_KEY environment variable not set.")
    
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "Authorization": f"Bearer {TOGETHER_API_KEY}",
    }

    response = requests.post(url, json=payload, headers=headers, stream=True)
    response.raise_for_status()  # Ensure HTTP request was successful

    return response

# Streamlit app layout
st.title("Climate Impact on Sports Performance and Infrastructure in Kenya")
st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure, with a focus on Kenya.")

# Inputs for climate conditions
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)

# Kenya-specific inputs
region = st.text_input("Enter region in Kenya:")
elevation = st.number_input("Elevation (m):", min_value=0, max_value=5000, value=1000)

# Sports and athlete inputs
sports = st.multiselect("Select sports:", ["Athletics", "Football", "Rugby", "Volleyball", "Boxing", "Swimming"])
athlete_types = st.multiselect("Select athlete types:", ["Professional", "Amateur", "Youth", "Senior"])

# Infrastructure inputs
infrastructure_types = st.multiselect("Select infrastructure types:", ["Outdoor Stadium", "Indoor Arena", "Training Facility", "Community Sports Ground"])

if st.button("Generate Prediction and Analysis"):
    all_message = (
        f"Assess the impact on sports performance, athletes, and infrastructure in Kenya based on climate conditions: "
        f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
        f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. "
        f"Region: {region}, Elevation: {elevation}m. "
        f"Sports: {', '.join(sports)}. Athlete types: {', '.join(athlete_types)}. "
        f"Infrastructure types: {', '.join(infrastructure_types)}. "
        f"Provide a detailed analysis of how these conditions affect performance, health, and infrastructure in Kenya. "
        f"Include specific impacts for each sport, athlete type, and infrastructure type. "
        f"Also, provide an overall performance score and an infrastructure impact score, both as percentages. "
        f"Suggest mitigation strategies for both performance and infrastructure. "
        f"Assess the socio-economic implications of these climate impacts on sports in Kenya, including equitable access to sports facilities. "
        f"Organize the information in tables with the following columns: Climate Conditions, Impact on Sports Performance, "
        f"Impact on Athletes' Health, Impact on Infrastructure, Mitigation Strategies, Socio-Economic Implications. "
        f"Be as accurate and specific to Kenya as possible in your analysis. And please do not generate long texts, make it as short and precise as possible, i am stressing on this please, generate something short."
    )

    try:
        stages = [
            "Analyzing climate conditions...",
            "Checking location data...",
            "Fetching historical data...",
            "Running simulations...",
            "Processing current weather...",
            "Assessing environmental factors...",
            "Calculating predictions...",
            "Compiling results...",
            "Finalizing analysis...",
            "Preparing output..."
        ]
        
        with st.spinner("Analyzing climate conditions and generating predictions..."):
            # Loop through each stage, updating the spinner text and waiting for 2 seconds
            for stage in stages:
                st.spinner(stage)
                time.sleep(2)
            
            initial_response = call_ai_model_initial(all_message)
    
            initial_text = ""
            for line in initial_response.iter_lines():
                if line:
                    line_content = line.decode('utf-8')
                    if line_content.startswith("data: "):
                        line_content = line_content[6:]  # Strip "data: " prefix
                    try:
                        json_data = json.loads(line_content)
                        if "choices" in json_data:
                            delta = json_data["choices"][0]["delta"]
                            if "content" in delta:
                                initial_text += delta["content"]
                    except json.JSONDecodeError:
                        continue
    
            st.success("Analysis completed!")
            # Display prediction
            st.subheader("Climate Impact Analysis for Sports in Kenya")
            st.markdown(initial_text.strip())

            # Extract and display scores
            performance_score = "N/A"
            infrastructure_score = "N/A"
            for line in initial_text.split('\n'):
                if "performance score:" in line.lower():
                    performance_score = line.split(":")[-1].strip()
                elif "infrastructure impact score:" in line.lower():
                    infrastructure_score = line.split(":")[-1].strip()

            # Display performance and infrastructure scores
            col1, col2 = st.columns(2)
            with col1:
                st.metric("Overall Performance Score", performance_score)
            with col2:
                st.metric("Infrastructure Impact Score", infrastructure_score)

            # Prepare data for visualization
            results_data = {
                "Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"],
                "Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
            }
            results_df = pd.DataFrame(results_data)

            # Display results in a table
            st.subheader("Climate Conditions Summary")
            st.table(results_df)

            # Create a radar chart for climate conditions
            fig = go.Figure(data=go.Scatterpolar(
                r=[temperature/50*100, humidity, wind_speed/2, uv_index/11*100, air_quality_index/5, precipitation/5, (atmospheric_pressure-900)/2],
                theta=results_df['Condition'],
                fill='toself'
            ))
            fig.update_layout(
                polar=dict(
                    radialaxis=dict(visible=True, range=[0, 100])
                ),
                showlegend=False
            )
            st.plotly_chart(fig)

            # Display analyzed sports and infrastructure
            st.subheader("Analyzed Components")
            col1, col2, col3 = st.columns(3)
            with col1:
                st.write("**Sports:**")
                for sport in sports:
                    st.write(f"- {sport}")
            with col2:
                st.write("**Athlete Types:**")
                for athlete_type in athlete_types:
                    st.write(f"- {athlete_type}")
            with col3:
                st.write("**Infrastructure Types:**")
                for infra_type in infrastructure_types:
                    st.write(f"- {infra_type}")

            # Socio-economic impact analysis
            st.subheader("Socio-Economic Impact Analysis")
            socio_economic_prompt = (
                f"Based on the climate conditions and sports analysis for {region}, Kenya, "
                f"provide a brief assessment of the socio-economic implications, including impacts on: "
                f"1) Local economy, 2) Community health, 3) Sports tourism, 4) Equitable access to sports facilities. "
                f"Consider the specific context of Kenya and the selected region. and make the response very precise and short, do not yap"
            )
        
            with st.spinner("Analyzing socio-economic impacts..."):
                socio_economic_response = call_ai_model_analysis(socio_economic_prompt)
                socio_economic_text = ""
                for line in socio_economic_response.iter_lines():
                    if line:
                        line_content = line.decode('utf-8')
                        if line_content.startswith("data: "):
                            line_content = line_content[6:]
                        try:
                            json_data = json.loads(line_content)
                            if "choices" in json_data:
                                delta = json_data["choices"][0]["delta"]
                                if "content" in delta:
                                    socio_economic_text += delta["content"]
                        except json.JSONDecodeError:
                            continue
        
            st.markdown(socio_economic_text.strip())

            # Mitigation strategies
            st.subheader("Mitigation Strategies")
            mitigation_prompt = (
                f"Based on the climate conditions and sports analysis for {region}, Kenya, "
                f"suggest specific mitigation strategies for: "
                f"1) Improving athlete performance and health, 2) Enhancing infrastructure resilience, "
                f"3) Ensuring equitable access to sports facilities. "
                f"Consider the specific context of Kenya and the selected region. And make the response very precise and short, do not yap"
            )
        
            with st.spinner("Generating mitigation strategies..."):
                mitigation_response = call_ai_model_analysis(mitigation_prompt)
                mitigation_text = ""
                for line in mitigation_response.iter_lines():
                    if line:
                        line_content = line.decode('utf-8')
                        if line_content.startswith("data: "):
                            line_content = line_content[6:]
                        try:
                            json_data = json.loads(line_content)
                            if "choices" in json_data:
                                delta = json_data["choices"][0]["delta"]
                                if "content" in delta:
                                    mitigation_text += delta["content"]
                        except json.JSONDecodeError:
                            continue
        
            st.markdown(mitigation_text.strip())

            # Display raw analysis result for debugging
            with st.expander("Show Raw Analysis"):
                st.text(initial_text)

    except ValueError as ve:
        st.error(f"Configuration error: {ve}")
    except requests.exceptions.RequestException as re:
        st.error(f"Request error: {re}")
    except Exception as e:
        st.error(f"An unexpected error occurred: {e}")