Spaces:
Runtime error
Runtime error
File size: 13,046 Bytes
9f54a3b 71ec4a8 9f54a3b 0e00146 a645649 c50f71f 9d150a9 a9c7401 a645649 71ec4a8 8092b5a 71ec4a8 a645649 7fcff87 9ad5122 7fcff87 c438b94 7fcff87 c438b94 0957448 7fcff87 9ad5122 45b3e7d 9ad5122 c50f71f 9ad5122 c50f71f 9ad5122 a645649 9ad5122 0957448 9ad5122 a645649 9ad5122 c50f71f 9ad5122 c50f71f 9ad5122 45b3e7d 0957448 7fcff87 9104631 65e9088 45b3e7d 65e9088 9104631 9ad5122 9104631 9ad5122 9104631 9ad5122 9104631 a645649 9104631 a645649 9104631 9ad5122 9104631 9ad5122 9104631 9ad5122 9104631 9ad5122 9104631 9ad5122 9104631 9ad5122 9104631 9ad5122 9104631 a645649 9104631 65eab1d 71ec4a8 9104631 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import streamlit as st
import requests
import os
import json
import pandas as pd
import plotly.graph_objects as go
import time
# Function to call the Together AI model for the initial analysis
def call_ai_model_initial(all_message):
url = "https://api.together.xyz/v1/chat/completions"
payload = {
"model": "NousResearch/Nous-Hermes-2-Yi-34B",
"temperature": 1.05,
"top_p": 0.9,
"top_k": 50,
"repetition_penalty": 1,
"n": 1,
"messages": [{"role": "user", "content": all_message}],
"stream_tokens": True,
}
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
if TOGETHER_API_KEY is None:
raise ValueError("TOGETHER_API_KEY environment variable not set.")
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {TOGETHER_API_KEY}",
}
response = requests.post(url, json=payload, headers=headers, stream=True)
response.raise_for_status() # Ensure HTTP request was successful
return response
# Function to call the Together AI model for analyzing the text and computing performance score
def call_ai_model_analysis(analysis_text):
url = "https://api.together.xyz/v1/chat/completions"
payload = {
"model": "NousResearch/Nous-Hermes-2-Yi-34B",
"temperature": 1.05,
"top_p": 0.9,
"top_k": 50,
"repetition_penalty": 1,
"n": 1,
"messages": [{"role": "user", "content": analysis_text}],
"stream_tokens": True,
}
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
if TOGETHER_API_KEY is None:
raise ValueError("TOGETHER_API_KEY environment variable not set.")
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {TOGETHER_API_KEY}",
}
response = requests.post(url, json=payload, headers=headers, stream=True)
response.raise_for_status() # Ensure HTTP request was successful
return response
# Streamlit app layout
st.title("Climate Impact on Sports Performance and Infrastructure in Kenya")
st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure, with a focus on Kenya.")
# Inputs for climate conditions
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
# Kenya-specific inputs
region = st.text_input("Enter region in Kenya:")
elevation = st.number_input("Elevation (m):", min_value=0, max_value=5000, value=1000)
# Sports and athlete inputs
sports = st.multiselect("Select sports:", ["Athletics", "Football", "Rugby", "Volleyball", "Boxing", "Swimming"])
athlete_types = st.multiselect("Select athlete types:", ["Professional", "Amateur", "Youth", "Senior"])
# Infrastructure inputs
infrastructure_types = st.multiselect("Select infrastructure types:", ["Outdoor Stadium", "Indoor Arena", "Training Facility", "Community Sports Ground"])
if st.button("Generate Prediction and Analysis"):
all_message = (
f"Assess the impact on sports performance, athletes, and infrastructure in Kenya based on climate conditions: "
f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. "
f"Region: {region}, Elevation: {elevation}m. "
f"Sports: {', '.join(sports)}. Athlete types: {', '.join(athlete_types)}. "
f"Infrastructure types: {', '.join(infrastructure_types)}. "
f"Provide a detailed analysis of how these conditions affect performance, health, and infrastructure in Kenya. "
f"Include specific impacts for each sport, athlete type, and infrastructure type. "
f"Also, provide an overall performance score and an infrastructure impact score, both as percentages. "
f"Suggest mitigation strategies for both performance and infrastructure. "
f"Assess the socio-economic implications of these climate impacts on sports in Kenya, including equitable access to sports facilities. "
f"Organize the information in tables with the following columns: Climate Conditions, Impact on Sports Performance, "
f"Impact on Athletes' Health, Impact on Infrastructure, Mitigation Strategies, Socio-Economic Implications. "
f"Be as accurate and specific to Kenya as possible in your analysis. And please do not generate long texts, make it as short and precise as possible, i am stressing on this please, generate something short."
)
try:
stages = [
"Analyzing climate conditions...",
"Checking location data...",
"Fetching historical data...",
"Running simulations...",
"Processing current weather...",
"Assessing environmental factors...",
"Calculating predictions...",
"Compiling results...",
"Finalizing analysis...",
"Preparing output..."
]
with st.spinner("Analyzing climate conditions and generating predictions..."):
# Loop through each stage, updating the spinner text and waiting for 2 seconds
for stage in stages:
st.spinner(stage)
time.sleep(2)
initial_response = call_ai_model_initial(all_message)
initial_text = ""
for line in initial_response.iter_lines():
if line:
line_content = line.decode('utf-8')
if line_content.startswith("data: "):
line_content = line_content[6:] # Strip "data: " prefix
try:
json_data = json.loads(line_content)
if "choices" in json_data:
delta = json_data["choices"][0]["delta"]
if "content" in delta:
initial_text += delta["content"]
except json.JSONDecodeError:
continue
st.success("Analysis completed!")
# Display prediction
st.subheader("Climate Impact Analysis for Sports in Kenya")
st.markdown(initial_text.strip())
# Extract and display scores
performance_score = "N/A"
infrastructure_score = "N/A"
for line in initial_text.split('\n'):
if "performance score:" in line.lower():
performance_score = line.split(":")[-1].strip()
elif "infrastructure impact score:" in line.lower():
infrastructure_score = line.split(":")[-1].strip()
# Display performance and infrastructure scores
col1, col2 = st.columns(2)
with col1:
st.metric("Overall Performance Score", performance_score)
with col2:
st.metric("Infrastructure Impact Score", infrastructure_score)
# Prepare data for visualization
results_data = {
"Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"],
"Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
}
results_df = pd.DataFrame(results_data)
# Display results in a table
st.subheader("Climate Conditions Summary")
st.table(results_df)
# Create a radar chart for climate conditions
fig = go.Figure(data=go.Scatterpolar(
r=[temperature/50*100, humidity, wind_speed/2, uv_index/11*100, air_quality_index/5, precipitation/5, (atmospheric_pressure-900)/2],
theta=results_df['Condition'],
fill='toself'
))
fig.update_layout(
polar=dict(
radialaxis=dict(visible=True, range=[0, 100])
),
showlegend=False
)
st.plotly_chart(fig)
# Display analyzed sports and infrastructure
st.subheader("Analyzed Components")
col1, col2, col3 = st.columns(3)
with col1:
st.write("**Sports:**")
for sport in sports:
st.write(f"- {sport}")
with col2:
st.write("**Athlete Types:**")
for athlete_type in athlete_types:
st.write(f"- {athlete_type}")
with col3:
st.write("**Infrastructure Types:**")
for infra_type in infrastructure_types:
st.write(f"- {infra_type}")
# Socio-economic impact analysis
st.subheader("Socio-Economic Impact Analysis")
socio_economic_prompt = (
f"Based on the climate conditions and sports analysis for {region}, Kenya, "
f"provide a brief assessment of the socio-economic implications, including impacts on: "
f"1) Local economy, 2) Community health, 3) Sports tourism, 4) Equitable access to sports facilities. "
f"Consider the specific context of Kenya and the selected region. and make the response very precise and short, do not yap"
)
with st.spinner("Analyzing socio-economic impacts..."):
socio_economic_response = call_ai_model_analysis(socio_economic_prompt)
socio_economic_text = ""
for line in socio_economic_response.iter_lines():
if line:
line_content = line.decode('utf-8')
if line_content.startswith("data: "):
line_content = line_content[6:]
try:
json_data = json.loads(line_content)
if "choices" in json_data:
delta = json_data["choices"][0]["delta"]
if "content" in delta:
socio_economic_text += delta["content"]
except json.JSONDecodeError:
continue
st.markdown(socio_economic_text.strip())
# Mitigation strategies
st.subheader("Mitigation Strategies")
mitigation_prompt = (
f"Based on the climate conditions and sports analysis for {region}, Kenya, "
f"suggest specific mitigation strategies for: "
f"1) Improving athlete performance and health, 2) Enhancing infrastructure resilience, "
f"3) Ensuring equitable access to sports facilities. "
f"Consider the specific context of Kenya and the selected region. And make the response very precise and short, do not yap"
)
with st.spinner("Generating mitigation strategies..."):
mitigation_response = call_ai_model_analysis(mitigation_prompt)
mitigation_text = ""
for line in mitigation_response.iter_lines():
if line:
line_content = line.decode('utf-8')
if line_content.startswith("data: "):
line_content = line_content[6:]
try:
json_data = json.loads(line_content)
if "choices" in json_data:
delta = json_data["choices"][0]["delta"]
if "content" in delta:
mitigation_text += delta["content"]
except json.JSONDecodeError:
continue
st.markdown(mitigation_text.strip())
# Display raw analysis result for debugging
with st.expander("Show Raw Analysis"):
st.text(initial_text)
except ValueError as ve:
st.error(f"Configuration error: {ve}")
except requests.exceptions.RequestException as re:
st.error(f"Request error: {re}")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
|