ogegadavis254 commited on
Commit
c50f71f
·
verified ·
1 Parent(s): 939c970

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -17
app.py CHANGED
@@ -3,6 +3,7 @@ import requests
3
  import os
4
  import json
5
  import pandas as pd
 
6
 
7
  # Function to call the Together AI model for the initial analysis
8
  def call_ai_model_initial(all_message):
@@ -75,17 +76,23 @@ air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value
75
  precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
76
  atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
77
 
78
- # Geographic location input
79
- latitude = st.number_input("Latitude:", min_value=-90.0, max_value=90.0, value=0.0)
80
- longitude = st.number_input("Longitude:", min_value=-180.0, max_value=180.0, value=0.0)
 
 
 
81
 
82
  if st.button("Generate Prediction"):
83
  all_message = (
84
- f"Assess the impact on sports performance and infrastructure based on climate conditions: "
85
  f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
86
  f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. "
87
- f"Location: Latitude {latitude}, Longitude {longitude}."
88
- f"After analyzing that, I want you to visualize the data in the best way possible, should be in a table, so that it could be easy to understand."
 
 
 
89
  )
90
 
91
  try:
@@ -111,8 +118,9 @@ if st.button("Generate Prediction"):
111
 
112
  with st.spinner("Generating predictions..."):
113
  analysis_text = (
114
- f"Analyze the following text and only give me one short sentense performance score (as a percentage) based on the climate conditions and their impact. "
115
- f"Please include a line that says 'Performance Score: XX%' in your response. Here's the text to analyze: {initial_text}"
 
116
  )
117
  analysis_response = call_ai_model_analysis(analysis_text)
118
 
@@ -133,12 +141,14 @@ if st.button("Generate Prediction"):
133
 
134
  st.success("Predictions generated!")
135
 
136
- # Extract performance score from the analysis result
137
  performance_score = "N/A"
 
138
  for line in analysis_result.split('\n'):
139
- if "performance" in line.lower() and "score" in line.lower():
140
  performance_score = line.split(":")[-1].strip()
141
- break
 
142
 
143
  # Prepare data for visualization
144
  results_data = {
@@ -148,19 +158,53 @@ if st.button("Generate Prediction"):
148
  results_df = pd.DataFrame(results_data)
149
 
150
  # Display results in a table
151
- st.subheader("Results Summary")
152
  st.table(results_df)
153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154
  # Display prediction
155
- st.markdown("**Predicted Impact on Performance and Infrastructure:**")
156
  st.markdown(initial_text.strip())
157
 
158
- # Display performance score
159
- st.markdown(f"**Performance Score:** {performance_score}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
 
161
  # Display raw analysis result for debugging
162
- st.subheader("Raw Analysis Result")
163
- st.text(analysis_result)
164
 
165
  except ValueError as ve:
166
  st.error(f"Configuration error: {ve}")
 
3
  import os
4
  import json
5
  import pandas as pd
6
+ import plotly.graph_objects as go
7
 
8
  # Function to call the Together AI model for the initial analysis
9
  def call_ai_model_initial(all_message):
 
76
  precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
77
  atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
78
 
79
+ # Sports and athlete inputs
80
+ sports = st.multiselect("Select sports:", ["Football", "Tennis", "Athletics", "Swimming", "Basketball", "Golf"])
81
+ athlete_types = st.multiselect("Select athlete types:", ["Professional", "Amateur", "Youth", "Senior"])
82
+
83
+ # Infrastructure inputs
84
+ infrastructure_types = st.multiselect("Select infrastructure types:", ["Outdoor Stadium", "Indoor Arena", "Swimming Pool", "Tennis Court", "Golf Course"])
85
 
86
  if st.button("Generate Prediction"):
87
  all_message = (
88
+ f"Assess the impact on sports performance, athletes, and infrastructure based on climate conditions: "
89
  f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
90
  f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. "
91
+ f"Sports: {', '.join(sports)}. Athlete types: {', '.join(athlete_types)}. "
92
+ f"Infrastructure types: {', '.join(infrastructure_types)}. "
93
+ f"Provide a detailed analysis of how these conditions affect performance, health, and infrastructure. "
94
+ f"Include specific impacts for each sport, athlete type, and infrastructure type. "
95
+ f"Also, provide an overall performance score and an infrastructure impact score, both as percentages."
96
  )
97
 
98
  try:
 
118
 
119
  with st.spinner("Generating predictions..."):
120
  analysis_text = (
121
+ f"Based on the following analysis, provide a performance score and an infrastructure impact score, "
122
+ f"both as percentages. Include lines that say 'Performance Score: XX%' and 'Infrastructure Impact Score: YY%' "
123
+ f"in your response. Here's the text to analyze: {initial_text}"
124
  )
125
  analysis_response = call_ai_model_analysis(analysis_text)
126
 
 
141
 
142
  st.success("Predictions generated!")
143
 
144
+ # Extract performance and infrastructure scores from the analysis result
145
  performance_score = "N/A"
146
+ infrastructure_score = "N/A"
147
  for line in analysis_result.split('\n'):
148
+ if "performance score:" in line.lower():
149
  performance_score = line.split(":")[-1].strip()
150
+ elif "infrastructure impact score:" in line.lower():
151
+ infrastructure_score = line.split(":")[-1].strip()
152
 
153
  # Prepare data for visualization
154
  results_data = {
 
158
  results_df = pd.DataFrame(results_data)
159
 
160
  # Display results in a table
161
+ st.subheader("Climate Conditions Summary")
162
  st.table(results_df)
163
 
164
+ # Create a radar chart for climate conditions
165
+ fig = go.Figure(data=go.Scatterpolar(
166
+ r=[temperature/50*100, humidity, wind_speed/2, uv_index/11*100, air_quality_index/5, precipitation/5, (atmospheric_pressure-900)/2],
167
+ theta=results_df['Condition'],
168
+ fill='toself'
169
+ ))
170
+ fig.update_layout(
171
+ polar=dict(
172
+ radialaxis=dict(visible=True, range=[0, 100])
173
+ ),
174
+ showlegend=False
175
+ )
176
+ st.plotly_chart(fig)
177
+
178
  # Display prediction
179
+ st.subheader("Predicted Impact on Performance and Infrastructure")
180
  st.markdown(initial_text.strip())
181
 
182
+ # Display performance and infrastructure scores
183
+ col1, col2 = st.columns(2)
184
+ with col1:
185
+ st.metric("Performance Score", performance_score)
186
+ with col2:
187
+ st.metric("Infrastructure Impact Score", infrastructure_score)
188
+
189
+ # Display analyzed sports and infrastructure
190
+ st.subheader("Analyzed Components")
191
+ col1, col2, col3 = st.columns(3)
192
+ with col1:
193
+ st.write("**Sports:**")
194
+ for sport in sports:
195
+ st.write(f"- {sport}")
196
+ with col2:
197
+ st.write("**Athlete Types:**")
198
+ for athlete_type in athlete_types:
199
+ st.write(f"- {athlete_type}")
200
+ with col3:
201
+ st.write("**Infrastructure Types:**")
202
+ for infra_type in infrastructure_types:
203
+ st.write(f"- {infra_type}")
204
 
205
  # Display raw analysis result for debugging
206
+ with st.expander("Show Raw Analysis"):
207
+ st.text(analysis_result)
208
 
209
  except ValueError as ve:
210
  st.error(f"Configuration error: {ve}")