|
import os, types |
|
from enum import Enum |
|
import json |
|
import requests |
|
import time |
|
from typing import Callable, Optional |
|
import litellm |
|
from litellm.utils import ModelResponse, get_secret, Usage |
|
import sys |
|
from copy import deepcopy |
|
import httpx |
|
|
|
class SagemakerError(Exception): |
|
def __init__(self, status_code, message): |
|
self.status_code = status_code |
|
self.message = message |
|
self.request = httpx.Request(method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker") |
|
self.response = httpx.Response(status_code=status_code, request=self.request) |
|
super().__init__( |
|
self.message |
|
) |
|
|
|
class SagemakerConfig(): |
|
""" |
|
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb |
|
""" |
|
max_new_tokens: Optional[int]=None |
|
top_p: Optional[float]=None |
|
temperature: Optional[float]=None |
|
return_full_text: Optional[bool]=None |
|
|
|
def __init__(self, |
|
max_new_tokens: Optional[int]=None, |
|
top_p: Optional[float]=None, |
|
temperature: Optional[float]=None, |
|
return_full_text: Optional[bool]=None) -> None: |
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != 'self' and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return {k: v for k, v in cls.__dict__.items() |
|
if not k.startswith('__') |
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) |
|
and v is not None} |
|
|
|
""" |
|
SAGEMAKER AUTH Keys/Vars |
|
os.environ['AWS_ACCESS_KEY_ID'] = "" |
|
os.environ['AWS_SECRET_ACCESS_KEY'] = "" |
|
""" |
|
|
|
|
|
|
|
def completion( |
|
model: str, |
|
messages: list, |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
logging_obj, |
|
optional_params=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
): |
|
import boto3 |
|
|
|
|
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) |
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None) |
|
aws_region_name = optional_params.pop("aws_region_name", None) |
|
|
|
if aws_access_key_id != None: |
|
|
|
|
|
client = boto3.client( |
|
service_name="sagemaker-runtime", |
|
aws_access_key_id=aws_access_key_id, |
|
aws_secret_access_key=aws_secret_access_key, |
|
region_name=aws_region_name, |
|
) |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
region_name = ( |
|
get_secret("AWS_REGION_NAME") or |
|
"us-west-2" |
|
) |
|
client = boto3.client( |
|
service_name="sagemaker-runtime", |
|
region_name=region_name, |
|
) |
|
|
|
|
|
inference_params = deepcopy(optional_params) |
|
inference_params.pop("stream", None) |
|
|
|
|
|
config = litellm.SagemakerConfig.get_config() |
|
for k, v in config.items(): |
|
if k not in inference_params: |
|
inference_params[k] = v |
|
|
|
model = model |
|
prompt = "" |
|
for message in messages: |
|
if "role" in message: |
|
if message["role"] == "user": |
|
prompt += ( |
|
f"{message['content']}" |
|
) |
|
else: |
|
prompt += ( |
|
f"{message['content']}" |
|
) |
|
else: |
|
prompt += f"{message['content']}" |
|
|
|
data = json.dumps({ |
|
"inputs": prompt, |
|
"parameters": inference_params |
|
}).encode('utf-8') |
|
|
|
|
|
request_str = f""" |
|
response = client.invoke_endpoint( |
|
EndpointName={model}, |
|
ContentType="application/json", |
|
Body={data}, |
|
CustomAttributes="accept_eula=true", |
|
) |
|
""" |
|
logging_obj.pre_call( |
|
input=prompt, |
|
api_key="", |
|
additional_args={"complete_input_dict": data, "request_str": request_str}, |
|
) |
|
|
|
response = client.invoke_endpoint( |
|
EndpointName=model, |
|
ContentType="application/json", |
|
Body=data, |
|
CustomAttributes="accept_eula=true", |
|
) |
|
response = response["Body"].read().decode("utf8") |
|
|
|
logging_obj.post_call( |
|
input=prompt, |
|
api_key="", |
|
original_response=response, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
print_verbose(f"raw model_response: {response}") |
|
|
|
completion_response = json.loads(response) |
|
try: |
|
completion_response_choices = completion_response[0] |
|
if "generation" in completion_response_choices: |
|
model_response["choices"][0]["message"]["content"] = completion_response_choices["generation"] |
|
elif "generated_text" in completion_response_choices: |
|
model_response["choices"][0]["message"]["content"] = completion_response_choices["generated_text"] |
|
except: |
|
raise SagemakerError(message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}", status_code=500) |
|
|
|
|
|
prompt_tokens = len( |
|
encoding.encode(prompt) |
|
) |
|
completion_tokens = len( |
|
encoding.encode(model_response["choices"][0]["message"].get("content", "")) |
|
) |
|
|
|
model_response["created"] = int(time.time()) |
|
model_response["model"] = model |
|
usage = Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens |
|
) |
|
model_response.usage = usage |
|
return model_response |
|
|
|
def embedding(): |
|
|
|
pass |
|
|