nnnn / litellm /llms /sagemaker.py
nonhuman's picture
Upload 165 files
395201c
import os, types
from enum import Enum
import json
import requests
import time
from typing import Callable, Optional
import litellm
from litellm.utils import ModelResponse, get_secret, Usage
import sys
from copy import deepcopy
import httpx
class SagemakerError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker")
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class SagemakerConfig():
"""
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb
"""
max_new_tokens: Optional[int]=None
top_p: Optional[float]=None
temperature: Optional[float]=None
return_full_text: Optional[bool]=None
def __init__(self,
max_new_tokens: Optional[int]=None,
top_p: Optional[float]=None,
temperature: Optional[float]=None,
return_full_text: Optional[bool]=None) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != 'self' and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {k: v for k, v in cls.__dict__.items()
if not k.startswith('__')
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
and v is not None}
"""
SAGEMAKER AUTH Keys/Vars
os.environ['AWS_ACCESS_KEY_ID'] = ""
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
"""
# set os.environ['AWS_REGION_NAME'] = <your-region_name>
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
):
import boto3
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_region_name = optional_params.pop("aws_region_name", None)
if aws_access_key_id != None:
# uses auth params passed to completion
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion
client = boto3.client(
service_name="sagemaker-runtime",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=aws_region_name,
)
else:
# aws_access_key_id is None, assume user is trying to auth using env variables
# boto3 automaticaly reads env variables
# we need to read region name from env
# I assume majority of users use .env for auth
region_name = (
get_secret("AWS_REGION_NAME") or
"us-west-2" # default to us-west-2 if user not specified
)
client = boto3.client(
service_name="sagemaker-runtime",
region_name=region_name,
)
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
inference_params = deepcopy(optional_params)
inference_params.pop("stream", None)
## Load Config
config = litellm.SagemakerConfig.get_config()
for k, v in config.items():
if k not in inference_params: # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
model = model
prompt = ""
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += (
f"{message['content']}"
)
else:
prompt += (
f"{message['content']}"
)
else:
prompt += f"{message['content']}"
data = json.dumps({
"inputs": prompt,
"parameters": inference_params
}).encode('utf-8')
## LOGGING
request_str = f"""
response = client.invoke_endpoint(
EndpointName={model},
ContentType="application/json",
Body={data},
CustomAttributes="accept_eula=true",
)
""" # type: ignore
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": data, "request_str": request_str},
)
## COMPLETION CALL
response = client.invoke_endpoint(
EndpointName=model,
ContentType="application/json",
Body=data,
CustomAttributes="accept_eula=true",
)
response = response["Body"].read().decode("utf8")
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=response,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response}")
## RESPONSE OBJECT
completion_response = json.loads(response)
try:
completion_response_choices = completion_response[0]
if "generation" in completion_response_choices:
model_response["choices"][0]["message"]["content"] = completion_response_choices["generation"]
elif "generated_text" in completion_response_choices:
model_response["choices"][0]["message"]["content"] = completion_response_choices["generated_text"]
except:
raise SagemakerError(message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}", status_code=500)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(
encoding.encode(prompt)
)
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens
)
model_response.usage = usage
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass