import os, types from enum import Enum import json import requests import time from typing import Callable, Optional import litellm from litellm.utils import ModelResponse, get_secret, Usage import sys from copy import deepcopy import httpx class SagemakerError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message self.request = httpx.Request(method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker") self.response = httpx.Response(status_code=status_code, request=self.request) super().__init__( self.message ) # Call the base class constructor with the parameters it needs class SagemakerConfig(): """ Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb """ max_new_tokens: Optional[int]=None top_p: Optional[float]=None temperature: Optional[float]=None return_full_text: Optional[bool]=None def __init__(self, max_new_tokens: Optional[int]=None, top_p: Optional[float]=None, temperature: Optional[float]=None, return_full_text: Optional[bool]=None) -> None: locals_ = locals() for key, value in locals_.items(): if key != 'self' and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return {k: v for k, v in cls.__dict__.items() if not k.startswith('__') and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) and v is not None} """ SAGEMAKER AUTH Keys/Vars os.environ['AWS_ACCESS_KEY_ID'] = "" os.environ['AWS_SECRET_ACCESS_KEY'] = "" """ # set os.environ['AWS_REGION_NAME'] = def completion( model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, encoding, logging_obj, optional_params=None, litellm_params=None, logger_fn=None, ): import boto3 # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) aws_access_key_id = optional_params.pop("aws_access_key_id", None) aws_region_name = optional_params.pop("aws_region_name", None) if aws_access_key_id != None: # uses auth params passed to completion # aws_access_key_id is not None, assume user is trying to auth using litellm.completion client = boto3.client( service_name="sagemaker-runtime", aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=aws_region_name, ) else: # aws_access_key_id is None, assume user is trying to auth using env variables # boto3 automaticaly reads env variables # we need to read region name from env # I assume majority of users use .env for auth region_name = ( get_secret("AWS_REGION_NAME") or "us-west-2" # default to us-west-2 if user not specified ) client = boto3.client( service_name="sagemaker-runtime", region_name=region_name, ) # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker inference_params = deepcopy(optional_params) inference_params.pop("stream", None) ## Load Config config = litellm.SagemakerConfig.get_config() for k, v in config.items(): if k not in inference_params: # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in inference_params[k] = v model = model prompt = "" for message in messages: if "role" in message: if message["role"] == "user": prompt += ( f"{message['content']}" ) else: prompt += ( f"{message['content']}" ) else: prompt += f"{message['content']}" data = json.dumps({ "inputs": prompt, "parameters": inference_params }).encode('utf-8') ## LOGGING request_str = f""" response = client.invoke_endpoint( EndpointName={model}, ContentType="application/json", Body={data}, CustomAttributes="accept_eula=true", ) """ # type: ignore logging_obj.pre_call( input=prompt, api_key="", additional_args={"complete_input_dict": data, "request_str": request_str}, ) ## COMPLETION CALL response = client.invoke_endpoint( EndpointName=model, ContentType="application/json", Body=data, CustomAttributes="accept_eula=true", ) response = response["Body"].read().decode("utf8") ## LOGGING logging_obj.post_call( input=prompt, api_key="", original_response=response, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response}") ## RESPONSE OBJECT completion_response = json.loads(response) try: completion_response_choices = completion_response[0] if "generation" in completion_response_choices: model_response["choices"][0]["message"]["content"] = completion_response_choices["generation"] elif "generated_text" in completion_response_choices: model_response["choices"][0]["message"]["content"] = completion_response_choices["generated_text"] except: raise SagemakerError(message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}", status_code=500) ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. prompt_tokens = len( encoding.encode(prompt) ) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"].get("content", "")) ) model_response["created"] = int(time.time()) model_response["model"] = model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens ) model_response.usage = usage return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass