|
|
|
|
|
import dotenv, os |
|
import requests |
|
|
|
dotenv.load_dotenv() |
|
import traceback |
|
import datetime |
|
|
|
model_cost = { |
|
"gpt-3.5-turbo": { |
|
"max_tokens": 4000, |
|
"input_cost_per_token": 0.0000015, |
|
"output_cost_per_token": 0.000002, |
|
}, |
|
"gpt-35-turbo": { |
|
"max_tokens": 4000, |
|
"input_cost_per_token": 0.0000015, |
|
"output_cost_per_token": 0.000002, |
|
}, |
|
"gpt-3.5-turbo-0613": { |
|
"max_tokens": 4000, |
|
"input_cost_per_token": 0.0000015, |
|
"output_cost_per_token": 0.000002, |
|
}, |
|
"gpt-3.5-turbo-0301": { |
|
"max_tokens": 4000, |
|
"input_cost_per_token": 0.0000015, |
|
"output_cost_per_token": 0.000002, |
|
}, |
|
"gpt-3.5-turbo-16k": { |
|
"max_tokens": 16000, |
|
"input_cost_per_token": 0.000003, |
|
"output_cost_per_token": 0.000004, |
|
}, |
|
"gpt-35-turbo-16k": { |
|
"max_tokens": 16000, |
|
"input_cost_per_token": 0.000003, |
|
"output_cost_per_token": 0.000004, |
|
}, |
|
"gpt-3.5-turbo-16k-0613": { |
|
"max_tokens": 16000, |
|
"input_cost_per_token": 0.000003, |
|
"output_cost_per_token": 0.000004, |
|
}, |
|
"gpt-4": { |
|
"max_tokens": 8000, |
|
"input_cost_per_token": 0.000003, |
|
"output_cost_per_token": 0.00006, |
|
}, |
|
"gpt-4-0613": { |
|
"max_tokens": 8000, |
|
"input_cost_per_token": 0.000003, |
|
"output_cost_per_token": 0.00006, |
|
}, |
|
"gpt-4-32k": { |
|
"max_tokens": 8000, |
|
"input_cost_per_token": 0.00006, |
|
"output_cost_per_token": 0.00012, |
|
}, |
|
"claude-instant-1": { |
|
"max_tokens": 100000, |
|
"input_cost_per_token": 0.00000163, |
|
"output_cost_per_token": 0.00000551, |
|
}, |
|
"claude-2": { |
|
"max_tokens": 100000, |
|
"input_cost_per_token": 0.00001102, |
|
"output_cost_per_token": 0.00003268, |
|
}, |
|
"text-bison-001": { |
|
"max_tokens": 8192, |
|
"input_cost_per_token": 0.000004, |
|
"output_cost_per_token": 0.000004, |
|
}, |
|
"chat-bison-001": { |
|
"max_tokens": 4096, |
|
"input_cost_per_token": 0.000002, |
|
"output_cost_per_token": 0.000002, |
|
}, |
|
"command-nightly": { |
|
"max_tokens": 4096, |
|
"input_cost_per_token": 0.000015, |
|
"output_cost_per_token": 0.000015, |
|
}, |
|
} |
|
|
|
|
|
class BerriSpendLogger: |
|
|
|
def __init__(self): |
|
|
|
self.account_id = os.getenv("BERRISPEND_ACCOUNT_ID") |
|
|
|
def price_calculator(self, model, response_obj, start_time, end_time): |
|
|
|
|
|
prompt_tokens_cost_usd_dollar = 0 |
|
completion_tokens_cost_usd_dollar = 0 |
|
if model in model_cost: |
|
prompt_tokens_cost_usd_dollar = ( |
|
model_cost[model]["input_cost_per_token"] |
|
* response_obj["usage"]["prompt_tokens"] |
|
) |
|
completion_tokens_cost_usd_dollar = ( |
|
model_cost[model]["output_cost_per_token"] |
|
* response_obj["usage"]["completion_tokens"] |
|
) |
|
elif "replicate" in model: |
|
|
|
|
|
model_run_time = end_time - start_time |
|
cost_usd_dollar = model_run_time * 0.0032 |
|
prompt_tokens_cost_usd_dollar = cost_usd_dollar / 2 |
|
completion_tokens_cost_usd_dollar = cost_usd_dollar / 2 |
|
else: |
|
|
|
input_cost_sum = 0 |
|
output_cost_sum = 0 |
|
for model in model_cost: |
|
input_cost_sum += model_cost[model]["input_cost_per_token"] |
|
output_cost_sum += model_cost[model]["output_cost_per_token"] |
|
avg_input_cost = input_cost_sum / len(model_cost.keys()) |
|
avg_output_cost = output_cost_sum / len(model_cost.keys()) |
|
prompt_tokens_cost_usd_dollar = ( |
|
model_cost[model]["input_cost_per_token"] |
|
* response_obj["usage"]["prompt_tokens"] |
|
) |
|
completion_tokens_cost_usd_dollar = ( |
|
model_cost[model]["output_cost_per_token"] |
|
* response_obj["usage"]["completion_tokens"] |
|
) |
|
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar |
|
|
|
def log_event( |
|
self, model, messages, response_obj, start_time, end_time, print_verbose |
|
): |
|
|
|
try: |
|
print_verbose( |
|
f"BerriSpend Logging - Enters logging function for model {model}" |
|
) |
|
|
|
url = f"https://berrispend.berri.ai/spend" |
|
headers = {"Content-Type": "application/json"} |
|
|
|
( |
|
prompt_tokens_cost_usd_dollar, |
|
completion_tokens_cost_usd_dollar, |
|
) = self.price_calculator(model, response_obj, start_time, end_time) |
|
total_cost = ( |
|
prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar |
|
) |
|
|
|
response_time = (end_time - start_time).total_seconds() |
|
if "response" in response_obj: |
|
data = [ |
|
{ |
|
"response_time": response_time, |
|
"model_id": response_obj["model"], |
|
"total_cost": total_cost, |
|
"messages": messages, |
|
"response": response_obj["choices"][0]["message"]["content"], |
|
"account_id": self.account_id, |
|
} |
|
] |
|
elif "error" in response_obj: |
|
data = [ |
|
{ |
|
"response_time": response_time, |
|
"model_id": response_obj["model"], |
|
"total_cost": total_cost, |
|
"messages": messages, |
|
"error": response_obj["error"], |
|
"account_id": self.account_id, |
|
} |
|
] |
|
|
|
print_verbose(f"BerriSpend Logging - final data object: {data}") |
|
response = requests.post(url, headers=headers, json=data) |
|
except: |
|
|
|
print_verbose(f"BerriSpend Logging Error - {traceback.format_exc()}") |
|
pass |
|
|