File size: 6,656 Bytes
395201c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#### What this does ####
#    On success + failure, log events to aispend.io
import dotenv, os
import requests

dotenv.load_dotenv()  # Loading env variables using dotenv
import traceback
import datetime

model_cost = {
    "gpt-3.5-turbo": {
        "max_tokens": 4000,
        "input_cost_per_token": 0.0000015,
        "output_cost_per_token": 0.000002,
    },
    "gpt-35-turbo": {
        "max_tokens": 4000,
        "input_cost_per_token": 0.0000015,
        "output_cost_per_token": 0.000002,
    },  # azure model name
    "gpt-3.5-turbo-0613": {
        "max_tokens": 4000,
        "input_cost_per_token": 0.0000015,
        "output_cost_per_token": 0.000002,
    },
    "gpt-3.5-turbo-0301": {
        "max_tokens": 4000,
        "input_cost_per_token": 0.0000015,
        "output_cost_per_token": 0.000002,
    },
    "gpt-3.5-turbo-16k": {
        "max_tokens": 16000,
        "input_cost_per_token": 0.000003,
        "output_cost_per_token": 0.000004,
    },
    "gpt-35-turbo-16k": {
        "max_tokens": 16000,
        "input_cost_per_token": 0.000003,
        "output_cost_per_token": 0.000004,
    },  # azure model name
    "gpt-3.5-turbo-16k-0613": {
        "max_tokens": 16000,
        "input_cost_per_token": 0.000003,
        "output_cost_per_token": 0.000004,
    },
    "gpt-4": {
        "max_tokens": 8000,
        "input_cost_per_token": 0.000003,
        "output_cost_per_token": 0.00006,
    },
    "gpt-4-0613": {
        "max_tokens": 8000,
        "input_cost_per_token": 0.000003,
        "output_cost_per_token": 0.00006,
    },
    "gpt-4-32k": {
        "max_tokens": 8000,
        "input_cost_per_token": 0.00006,
        "output_cost_per_token": 0.00012,
    },
    "claude-instant-1": {
        "max_tokens": 100000,
        "input_cost_per_token": 0.00000163,
        "output_cost_per_token": 0.00000551,
    },
    "claude-2": {
        "max_tokens": 100000,
        "input_cost_per_token": 0.00001102,
        "output_cost_per_token": 0.00003268,
    },
    "text-bison-001": {
        "max_tokens": 8192,
        "input_cost_per_token": 0.000004,
        "output_cost_per_token": 0.000004,
    },
    "chat-bison-001": {
        "max_tokens": 4096,
        "input_cost_per_token": 0.000002,
        "output_cost_per_token": 0.000002,
    },
    "command-nightly": {
        "max_tokens": 4096,
        "input_cost_per_token": 0.000015,
        "output_cost_per_token": 0.000015,
    },
}


class BerriSpendLogger:
    # Class variables or attributes
    def __init__(self):
        # Instance variables
        self.account_id = os.getenv("BERRISPEND_ACCOUNT_ID")

    def price_calculator(self, model, response_obj, start_time, end_time):
        # try and find if the model is in the model_cost map
        # else default to the average of the costs
        prompt_tokens_cost_usd_dollar = 0
        completion_tokens_cost_usd_dollar = 0
        if model in model_cost:
            prompt_tokens_cost_usd_dollar = (
                model_cost[model]["input_cost_per_token"]
                * response_obj["usage"]["prompt_tokens"]
            )
            completion_tokens_cost_usd_dollar = (
                model_cost[model]["output_cost_per_token"]
                * response_obj["usage"]["completion_tokens"]
            )
        elif "replicate" in model:
            # replicate models are charged based on time
            # llama 2 runs on an nvidia a100 which costs $0.0032 per second - https://replicate.com/replicate/llama-2-70b-chat
            model_run_time = end_time - start_time  # assuming time in seconds
            cost_usd_dollar = model_run_time * 0.0032
            prompt_tokens_cost_usd_dollar = cost_usd_dollar / 2
            completion_tokens_cost_usd_dollar = cost_usd_dollar / 2
        else:
            # calculate average input cost
            input_cost_sum = 0
            output_cost_sum = 0
            for model in model_cost:
                input_cost_sum += model_cost[model]["input_cost_per_token"]
                output_cost_sum += model_cost[model]["output_cost_per_token"]
            avg_input_cost = input_cost_sum / len(model_cost.keys())
            avg_output_cost = output_cost_sum / len(model_cost.keys())
            prompt_tokens_cost_usd_dollar = (
                model_cost[model]["input_cost_per_token"]
                * response_obj["usage"]["prompt_tokens"]
            )
            completion_tokens_cost_usd_dollar = (
                model_cost[model]["output_cost_per_token"]
                * response_obj["usage"]["completion_tokens"]
            )
        return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar

    def log_event(
        self, model, messages, response_obj, start_time, end_time, print_verbose
    ):
        # Method definition
        try:
            print_verbose(
                f"BerriSpend Logging - Enters logging function for model {model}"
            )

            url = f"https://berrispend.berri.ai/spend"
            headers = {"Content-Type": "application/json"}

            (
                prompt_tokens_cost_usd_dollar,
                completion_tokens_cost_usd_dollar,
            ) = self.price_calculator(model, response_obj, start_time, end_time)
            total_cost = (
                prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
            )

            response_time = (end_time - start_time).total_seconds()
            if "response" in response_obj:
                data = [
                    {
                        "response_time": response_time,
                        "model_id": response_obj["model"],
                        "total_cost": total_cost,
                        "messages": messages,
                        "response": response_obj["choices"][0]["message"]["content"],
                        "account_id": self.account_id,
                    }
                ]
            elif "error" in response_obj:
                data = [
                    {
                        "response_time": response_time,
                        "model_id": response_obj["model"],
                        "total_cost": total_cost,
                        "messages": messages,
                        "error": response_obj["error"],
                        "account_id": self.account_id,
                    }
                ]

            print_verbose(f"BerriSpend Logging - final data object: {data}")
            response = requests.post(url, headers=headers, json=data)
        except:
            # traceback.print_exc()
            print_verbose(f"BerriSpend Logging Error - {traceback.format_exc()}")
            pass