File size: 9,663 Bytes
a71afbe
 
 
 
 
 
eefdadb
a71afbe
 
 
 
 
 
 
 
 
 
 
 
 
 
07dd5b0
a71afbe
 
f2deb22
 
 
 
 
 
0e955d7
 
4efb348
 
f2deb22
 
07dd5b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b9227e
07dd5b0
485c4fe
6b9227e
 
 
 
 
 
 
e58811e
1ab67a4
4dfbd92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b9227e
4dfbd92
 
 
 
 
1ab67a4
4dfbd92
4efb348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e955d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b9227e
0e955d7
 
 
 
 
 
 
 
 
6b9227e
07dd5b0
eefdadb
e58811e
 
485c4fe
eefdadb
485c4fe
 
 
 
e58811e
 
485c4fe
e58811e
485c4fe
07dd5b0
 
 
 
 
485c4fe
6b9227e
e58811e
eefdadb
 
 
 
 
386797d
4efb348
eefdadb
4efb348
eefdadb
 
 
d450846
 
6b9227e
d450846
 
6b9227e
 
 
d450846
386797d
 
 
d450846
eefdadb
a71afbe
4efb348
07dd5b0
6b9227e
0e955d7
 
07dd5b0
0e955d7
07dd5b0
0e955d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07dd5b0
6b9227e
0e955d7
 
 
6b9227e
 
 
0e955d7
 
 
 
 
 
07dd5b0
6b9227e
 
 
 
 
 
 
 
 
 
 
0e955d7
6b9227e
 
0e955d7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
'''
This is the originall CLL Explorer application that allows users to upload, process, and save images.

The application provides the following functionalities:
- Upload microscope images.
- Adjust image view with zoom and enhancement controls.
- Detect and measure cells automatically.
- Save analysis results and annotations.

The application is divided into the following sections:
1. **Upload Images**: Users can upload microscope images in JPG or PNG format.
2. **Select Image**: Users can select an image from the uploaded files.
3. **Processed Image**: Displays the processed image with zoom and enhancement controls.
4. **Image Controls**: Allows users to adjust the image view with sliders for X and Y coordinates, zoom, contrast, brightness, and sharpness.
5. **Save Options**: Provides options to save the processed image, image description, and image parameters.

To run the application:
1. Save the script in a Python file (e.g., app.py).
2. Run the script using the Streamlit command:
```bash
streamlit run app.py

'''

import streamlit as st
from PIL import Image, ImageEnhance
import pandas as pd
import numpy as np
import io
import os
import tempfile
import zipfile
import cv2
import numpy as np

def zoom_at(img, x, y, zoom):
    '''
    Zoom into an image at a specific location.

    Parameters:
    ----------
    img : PIL.Image
        Input image.

    x : int
        X-coordinate of the zoom center.

    y : int
        Y-coordinate of the zoom center.

    zoom : float
        Zoom factor.

    Returns:
    -------
    PIL.Image
        Zoomed image resized to 500x500 pixels.
    '''
    w, h = img.size
    zoom_half = zoom / 2
    left = max(x - w * zoom_half, 0)
    upper = max(y - h * zoom_half, 0)
    right = min(x + w * zoom_half, w)
    lower = min(y + h * zoom_half, h)
    img_cropped = img.crop((left, upper, right, lower))
    return img_cropped.resize((500, 500), Image.LANCZOS)

@st.cache_data
def apply_enhancements(img, x, y, zoom, contrast, brightness, sharpness):
    '''
    Apply zoom and image enhancements to the input image.

    Parameters:
    ----------
    img : PIL.Image
        Input image.
    x : int
        X-coordinate of the zoom center.
    y : int
        Y-coordinate of the zoom center.
    zoom : float
        Zoom factor.
    contrast : float
        Contrast adjustment factor.
    brightness : float
        Brightness adjustment factor.
    sharpness : float
        Sharpness adjustment factor.

    Returns:
    -------
    PIL.Image
        Enhanced image resized to 500x500 pixels.
    '''
    zoomed = zoom_at(img, x, y, zoom)
    enhanced_contrast = ImageEnhance.Contrast(zoomed).enhance(contrast)
    enhanced_brightness = ImageEnhance.Brightness(enhanced_contrast).enhance(brightness)
    enhanced_sharpness = ImageEnhance.Sharpness(enhanced_brightness).enhance(sharpness)
    return enhanced_sharpness

def apply_enhancements_cv(img, x, y, zoom, contrast, brightness, sharpness):
    """
    Use OpenCV for zoom and enhancements.
    """
    # Convert PIL to OpenCV format
    img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
    h, w = img_cv.shape[:2]

    # Zoom
    zoom_half = int(zoom / 2)
    left = max(x - w * zoom_half, 0)
    top = max(y - h * zoom_half, 0)
    right = min(x + w * zoom_half, w)
    bottom = min(y + h * zoom_half, h)
    cropped = img_cv[int(top):int(bottom), int(left):int(right)]
    resized = cv2.resize(cropped, (500, 500), interpolation=cv2.INTER_LANCZOS4)

    # Convert back to PIL for other enhancements
    pil_img = Image.fromarray(cv2.cvtColor(resized, cv2.COLOR_BGR2RGB))
    enhanced_contrast = ImageEnhance.Contrast(pil_img).enhance(contrast)
    enhanced_brightness = ImageEnhance.Brightness(enhanced_contrast).enhance(brightness)
    enhanced_sharpness = ImageEnhance.Sharpness(enhanced_brightness).enhance(sharpness)
    return enhanced_sharpness

def create_zip(processed_img, description, params):
    '''
    Create a zip archive containing the processed image and annotations.

    Parameters:
    ----------
    processed_img : PIL.Image
        The processed image.
    description : str
        Description of the image.
    params : dict
        Image parameters.

    Returns:
    -------
    bytes
        Byte content of the zip file.
    '''
    with tempfile.TemporaryDirectory() as tmpdirname:
        img_path = os.path.join(tmpdirname, "processed_image.jpg")
        desc_path = os.path.join(tmpdirname, "description.txt")
        params_path = os.path.join(tmpdirname, "parameters.json")

        # Save processed image
        processed_img.save(img_path)

        # Save description
        with open(desc_path, "w") as f:
            f.write(description)

        # Save parameters
        pd.DataFrame([params]).to_json(params_path, orient="records")

        # Create zip
        zip_buffer = io.BytesIO()
        with zipfile.ZipFile(zip_buffer, "w") as zipf:
            zipf.write(img_path, arcname="processed_image.jpg")
            zipf.write(desc_path, arcname="description.txt")
            zipf.write(params_path, arcname="parameters.json")

        zip_buffer.seek(0)
        return zip_buffer

# Streamlit App Configuration
st.set_page_config(page_title="CLL Explorer", layout="wide")
st.title("CLL Explorer: Cell Image Analysis Prep Tool")

st.markdown("""
### About This Application
This tool assists researchers in analyzing microscope images of any cell type.
- **Upload** microscope images.
- **Adjust** image view with zoom and enhancement controls.
- **Detect** and measure cells automatically.
- **Save** analysis results and annotations.
""")

uploaded_files = st.file_uploader("Upload Images", accept_multiple_files=True, type=["jpg", "png"])

if uploaded_files:
    img_index = st.selectbox(
        "Select Image",
        range(len(uploaded_files)),
        format_func=lambda x: uploaded_files[x].name
    )
    img_data = uploaded_files[img_index].read()
    img = Image.open(io.BytesIO(img_data)).convert("RGB").resize((500, 500))

    # Create columns with image on the left and controls on the right
    image_col, controls_col = st.columns([3, 1])

    with image_col:
        st.subheader("Processed Image")
        if 'processed_img' in st.session_state:
            st.image(st.session_state.processed_img, use_column_width=True, caption="Processed Image")
        else:
            st.image(img, use_column_width=True, caption="Processed Image")

    with controls_col:
        st.subheader("Image Controls")
        x = st.slider("X Coordinate", 0, 500, 250)
        y = st.slider("Y Coordinate", 0, 500, 250)
        zoom = st.slider("Zoom", 1.0, 10.0, 5.0, step=0.1)

        with st.expander("Enhancement Settings", expanded=True):
            contrast = st.slider("Contrast", 0.0, 5.0, 1.0, step=0.1)
            brightness = st.slider("Brightness", 0.0, 5.0, 1.0, step=0.1)
            sharpness = st.slider("Sharpness", 0.0, 2.0, 1.0, step=0.1)

        if st.button("Apply Adjustments"):
            processed_img = apply_enhancements(img, x, y, zoom, contrast, brightness, sharpness)
            st.session_state.processed_img = processed_img

    # Display Original Image Below
    st.subheader("Original Image")
    st.image(img, use_column_width=True, caption="Original Image")

    # Save and Export Options
    st.markdown("---")
    st.subheader("Save and Export Options")

    with st.expander("Add Annotations", expanded=True):
        description = st.text_area("Describe the image", "")
        params = {
            "coordinates_x": x,
            "coordinates_y": y,
            "zoom": zoom,
            "contrast": contrast,
            "brightness": brightness,
            "sharpness": sharpness
        }

    if st.button("Prepare Download"):
        if 'processed_img' in st.session_state and description:
            zip_buffer = create_zip(st.session_state.processed_img, description, params)
            st.download_button(
                label="Download Zip",
                data=zip_buffer,
                file_name="processed_image_and_annotations.zip",
                mime="application/zip"
            )
            st.success("Zip file is ready for download.")
        else:
            st.warning("Ensure that the processed image is available and description is provided.")

    # Optional: Save Processed Image Locally
    save_image = st.checkbox("Save Processed Image Locally")
    if save_image:
        if 'processed_img' in st.session_state:
            processed_img_path = os.path.join("processed_image_500x500.jpg")
            st.session_state.processed_img.save(processed_img_path)
            st.success(f"Image saved as `{processed_img_path}`")
        else:
            st.warning("No processed image to save.")

    # Optional: Rename Files
    if st.button("Rename Files"):
        if 'processed_img' in st.session_state:
            file_ext = str(np.random.randint(100))
            new_img_name = f"img_processed_{file_ext}.jpg"
            processed_img_path = "processed_image_500x500.jpg"
            if os.path.exists(processed_img_path):
                os.rename(processed_img_path, new_img_name)

            # Save parameters and description
            params_path = f"parameters_{file_ext}.json"
            description_path = f"description_{file_ext}.txt"

            pd.DataFrame([params]).to_json(params_path, orient="records")
            with open(description_path, "w") as f:
                f.write(description)

            st.success(f"Files renamed to `{new_img_name}`, `{params_path}`, and `{description_path}`")
        else:
            st.warning("No processed image to rename.")