Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,63 +4,82 @@ import pandas as pd
|
|
4 |
import numpy as np
|
5 |
import io
|
6 |
import os
|
|
|
7 |
|
8 |
def zoom_at(img, x, y, zoom):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
st.
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
import io
|
6 |
import os
|
7 |
+
from pathlib import Path
|
8 |
|
9 |
def zoom_at(img, x, y, zoom):
|
10 |
+
# ...existing code...
|
11 |
+
|
12 |
+
# App title and description
|
13 |
+
st.set_page_config(page_title="Cell Explorer", layout="wide")
|
14 |
+
st.title("CLL Explorer: Annotation Tool")
|
15 |
+
|
16 |
+
st.markdown("""
|
17 |
+
### About this Application
|
18 |
+
This tool helps researchers analyze microscope images of blood cells for malaria detection:
|
19 |
+
- Upload microscope images
|
20 |
+
- Adjust image view with zoom and enhancement controls
|
21 |
+
- Detect and measure cells automatically
|
22 |
+
- Save analysis results and annotations
|
23 |
+
|
24 |
+
**Note**: Cell measurements are in micrometers (µm)
|
25 |
+
""")
|
26 |
+
|
27 |
+
# Create tabs for different functions
|
28 |
+
tab1, tab2, tab3 = st.tabs(["Image Analysis", "Detection Results", "Settings"])
|
29 |
+
|
30 |
+
with tab1:
|
31 |
+
col1, col2 = st.columns([2,1])
|
32 |
+
|
33 |
+
with col1:
|
34 |
+
uploaded_files = st.file_uploader("Upload Images", accept_multiple_files=True, type=["jpg", "png"])
|
35 |
+
|
36 |
+
if uploaded_files:
|
37 |
+
img_index = st.selectbox("Select Image", range(len(uploaded_files)))
|
38 |
+
img_data = uploaded_files[img_index].read()
|
39 |
+
img = Image.open(io.BytesIO(img_data)).resize((800, 800))
|
40 |
+
|
41 |
+
st.image(img, caption="Original Image", use_column_width=True)
|
42 |
+
|
43 |
+
with col2:
|
44 |
+
if uploaded_files:
|
45 |
+
st.subheader("Image Controls")
|
46 |
+
x = st.slider("X Position", 0, 800, 400)
|
47 |
+
y = st.slider("Y Position", 0, 800, 400)
|
48 |
+
zoom = st.slider("Zoom Level", 1, 10, 5)
|
49 |
+
|
50 |
+
with st.expander("Enhancement Settings"):
|
51 |
+
contrast = st.slider("Contrast", 0.0, 5.0, 1.0)
|
52 |
+
brightness = st.slider("Brightness", 0.0, 5.0, 1.0)
|
53 |
+
sharpness = st.slider("Sharpness", 0.0, 2.0, 1.0)
|
54 |
+
|
55 |
+
img_zoomed = zoom_at(img, x, y, zoom)
|
56 |
+
img_processed = ImageEnhance.Contrast(img_zoomed).enhance(contrast)
|
57 |
+
img_processed = ImageEnhance.Brightness(img_processed).enhance(brightness)
|
58 |
+
img_processed = ImageEnhance.Sharpness(img_processed).enhance(sharpness)
|
59 |
+
|
60 |
+
st.image(img_processed, caption="Processed View", use_column_width=True)
|
61 |
+
|
62 |
+
with tab2:
|
63 |
+
if uploaded_files:
|
64 |
+
st.subheader("Cell Detection Results")
|
65 |
+
# Add your existing cell detection code here
|
66 |
+
|
67 |
+
col1, col2 = st.columns(2)
|
68 |
+
with col1:
|
69 |
+
description = st.text_area("Analysis Notes", "")
|
70 |
+
with col2:
|
71 |
+
if st.button("Save Analysis"):
|
72 |
+
timestamp = pd.Timestamp.now().strftime("%Y%m%d_%H%M%S")
|
73 |
+
save_dir = Path("analysis_results") / timestamp
|
74 |
+
save_dir.mkdir(parents=True, exist_ok=True)
|
75 |
+
|
76 |
+
img_processed.save(save_dir / "processed_image.jpg")
|
77 |
+
with open(save_dir / "analysis_notes.txt", "w") as f:
|
78 |
+
f.write(description)
|
79 |
+
st.success(f"Analysis saved to {save_dir}")
|
80 |
+
|
81 |
+
with tab3:
|
82 |
+
st.subheader("Application Settings")
|
83 |
+
st.checkbox("Enable Auto-Detection", value=True)
|
84 |
+
st.selectbox("Measurement Unit", ["Micrometers", "Pixels"])
|
85 |
+
st.number_input("Detection Confidence Threshold", 0.0, 1.0, 0.5)
|