|
<!DOCTYPE html> |
|
<html lang="en"><head> |
|
<script src="llm_conf_files/libs/clipboard/clipboard.min.js"></script> |
|
<script src="llm_conf_files/libs/quarto-html/tabby.min.js"></script> |
|
<script src="llm_conf_files/libs/quarto-html/popper.min.js"></script> |
|
<script src="llm_conf_files/libs/quarto-html/tippy.umd.min.js"></script> |
|
<link href="llm_conf_files/libs/quarto-html/tippy.css" rel="stylesheet"> |
|
<link href="llm_conf_files/libs/quarto-html/light-border.css" rel="stylesheet"> |
|
<link href="llm_conf_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light"> |
|
<link href="llm_conf_files/libs/quarto-html/quarto-syntax-highlighting-dark.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8"> |
|
<meta name="generator" content="quarto-99.9.9"> |
|
|
|
<title>Scaling Model Training with More Compute, How Do They Do It?</title> |
|
<meta name="apple-mobile-web-app-capable" content="yes"> |
|
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent"> |
|
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui"> |
|
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/reset.css"> |
|
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/reveal.css"> |
|
<style> |
|
code{white-space: pre-wrap;} |
|
span.smallcaps{font-variant: small-caps;} |
|
div.columns{display: flex; gap: min(4vw, 1.5em);} |
|
div.column{flex: auto; overflow-x: auto;} |
|
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;} |
|
ul.task-list{list-style: none;} |
|
ul.task-list li input[type="checkbox"] { |
|
width: 0.8em; |
|
margin: 0 0.8em 0.2em -1em; |
|
vertical-align: middle; |
|
} |
|
|
|
pre > code.sourceCode { white-space: pre; position: relative; } |
|
pre > code.sourceCode > span { line-height: 1.25; } |
|
pre > code.sourceCode > span:empty { height: 1.2em; } |
|
.sourceCode { overflow: visible; } |
|
code.sourceCode > span { color: inherit; text-decoration: inherit; } |
|
div.sourceCode { margin: 1em 0; } |
|
pre.sourceCode { margin: 0; } |
|
@media screen { |
|
div.sourceCode { overflow: auto; } |
|
} |
|
@media print { |
|
pre > code.sourceCode { white-space: pre-wrap; } |
|
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; } |
|
} |
|
pre.numberSource code |
|
{ counter-reset: source-line 0; } |
|
pre.numberSource code > span |
|
{ position: relative; left: -4em; counter-increment: source-line; } |
|
pre.numberSource code > span > a:first-child::before |
|
{ content: counter(source-line); |
|
position: relative; left: -1em; text-align: right; vertical-align: baseline; |
|
border: none; display: inline-block; |
|
-webkit-touch-callout: none; -webkit-user-select: none; |
|
-khtml-user-select: none; -moz-user-select: none; |
|
-ms-user-select: none; user-select: none; |
|
padding: 0 4px; width: 4em; |
|
} |
|
pre.numberSource { margin-left: 3em; padding-left: 4px; } |
|
div.sourceCode |
|
{ color: #f8f8f2; } |
|
@media screen { |
|
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; } |
|
} |
|
code span { color: #f8f8f2; } |
|
code span.al { color: #f07178; background-color: #2a0f15; font-weight: bold; } |
|
code span.an { color: #d4d0ab; } |
|
code span.at { color: #00e0e0; } |
|
code span.bn { color: #d4d0ab; } |
|
code span.bu { color: #abe338; } |
|
code span.cf { color: #ffa07a; font-weight: bold; } |
|
code span.ch { color: #abe338; } |
|
code span.cn { color: #ffd700; } |
|
code span.co { color: #f8f8f2; font-style: italic; } |
|
code span.cv { color: #ffd700; } |
|
code span.do { color: #f8f8f2; } |
|
code span.dt { color: #ffa07a; } |
|
code span.dv { color: #d4d0ab; } |
|
code span.er { color: #f07178; text-decoration: underline; } |
|
code span.ex { color: #00e0e0; font-weight: bold; } |
|
code span.fl { color: #d4d0ab; } |
|
code span.fu { color: #ffa07a; } |
|
code span.im { color: #abe338; } |
|
code span.in { color: #d4d0ab; } |
|
code span.kw { color: #ffa07a; font-weight: bold; } |
|
code span.op { color: #ffa07a; } |
|
code span.ot { color: #00e0e0; } |
|
code span.pp { color: #dcc6e0; } |
|
code span.re { color: #00e0e0; background-color: #f8f8f2; } |
|
code span.sc { color: #abe338; } |
|
code span.ss { color: #abe338; } |
|
code span.st { color: #abe338; } |
|
code span.va { color: #00e0e0; } |
|
code span.vs { color: #abe338; } |
|
code span.wa { color: #dcc6e0; } |
|
</style> |
|
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/theme/quarto.css"> |
|
<link href="llm_conf_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet"> |
|
<link href="llm_conf_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet"> |
|
<link href="llm_conf_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet"> |
|
<link href="llm_conf_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet"> |
|
<style type="text/css"> |
|
|
|
.callout { |
|
margin-top: 1em; |
|
margin-bottom: 1em; |
|
border-radius: .25rem; |
|
} |
|
|
|
.callout.callout-style-simple { |
|
padding: 0em 0.5em; |
|
border-left: solid #acacac .3rem; |
|
border-right: solid 1px silver; |
|
border-top: solid 1px silver; |
|
border-bottom: solid 1px silver; |
|
display: flex; |
|
} |
|
|
|
.callout.callout-style-default { |
|
border-left: solid #acacac .3rem; |
|
border-right: solid 1px silver; |
|
border-top: solid 1px silver; |
|
border-bottom: solid 1px silver; |
|
} |
|
|
|
.callout .callout-body-container { |
|
flex-grow: 1; |
|
} |
|
|
|
.callout.callout-style-simple .callout-body { |
|
font-size: 1rem; |
|
font-weight: 400; |
|
} |
|
|
|
.callout.callout-style-default .callout-body { |
|
font-size: 0.9rem; |
|
font-weight: 400; |
|
} |
|
|
|
.callout.callout-titled.callout-style-simple .callout-body { |
|
margin-top: 0.2em; |
|
} |
|
|
|
.callout:not(.callout-titled) .callout-body { |
|
display: flex; |
|
} |
|
|
|
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content { |
|
padding-left: 1.6em; |
|
} |
|
|
|
.callout.callout-titled .callout-header { |
|
padding-top: 0.2em; |
|
margin-bottom: -0.2em; |
|
} |
|
|
|
.callout.callout-titled .callout-title p { |
|
margin-top: 0.5em; |
|
margin-bottom: 0.5em; |
|
} |
|
|
|
.callout.callout-titled.callout-style-simple .callout-content p { |
|
margin-top: 0; |
|
} |
|
|
|
.callout.callout-titled.callout-style-default .callout-content p { |
|
margin-top: 0.7em; |
|
} |
|
|
|
.callout.callout-style-simple div.callout-title { |
|
border-bottom: none; |
|
font-size: .9rem; |
|
font-weight: 600; |
|
opacity: 75%; |
|
} |
|
|
|
.callout.callout-style-default div.callout-title { |
|
border-bottom: none; |
|
font-weight: 600; |
|
opacity: 85%; |
|
font-size: 0.9rem; |
|
padding-left: 0.5em; |
|
padding-right: 0.5em; |
|
} |
|
|
|
.callout.callout-style-default div.callout-content { |
|
padding-left: 0.5em; |
|
padding-right: 0.5em; |
|
} |
|
|
|
.callout.callout-style-simple .callout-icon::before { |
|
height: 1rem; |
|
width: 1rem; |
|
display: inline-block; |
|
content: ""; |
|
background-repeat: no-repeat; |
|
background-size: 1rem 1rem; |
|
} |
|
|
|
.callout.callout-style-default .callout-icon::before { |
|
height: 0.9rem; |
|
width: 0.9rem; |
|
display: inline-block; |
|
content: ""; |
|
background-repeat: no-repeat; |
|
background-size: 0.9rem 0.9rem; |
|
} |
|
|
|
.callout-title { |
|
display: flex |
|
} |
|
|
|
.callout-icon::before { |
|
margin-top: 1rem; |
|
padding-right: .5rem; |
|
} |
|
|
|
.callout.no-icon::before { |
|
display: none !important; |
|
} |
|
|
|
.callout.callout-titled .callout-body > .callout-content > :last-child { |
|
padding-bottom: 0.5rem; |
|
margin-bottom: 0; |
|
} |
|
|
|
.callout.callout-titled .callout-icon::before { |
|
margin-top: .5rem; |
|
padding-right: .5rem; |
|
} |
|
|
|
.callout:not(.callout-titled) .callout-icon::before { |
|
margin-top: 1rem; |
|
padding-right: .5rem; |
|
} |
|
|
|
|
|
|
|
div.callout-note { |
|
border-left-color: #4582ec !important; |
|
} |
|
|
|
div.callout-note .callout-icon::before { |
|
background-image: url(''); |
|
} |
|
|
|
div.callout-note.callout-style-default .callout-title { |
|
background-color: #dae6fb |
|
} |
|
|
|
div.callout-important { |
|
border-left-color: #d9534f !important; |
|
} |
|
|
|
div.callout-important .callout-icon::before { |
|
background-image: url(''); |
|
} |
|
|
|
div.callout-important.callout-style-default .callout-title { |
|
background-color: #f7dddc |
|
} |
|
|
|
div.callout-warning { |
|
border-left-color: #f0ad4e !important; |
|
} |
|
|
|
div.callout-warning .callout-icon::before { |
|
background-image: url(''); |
|
} |
|
|
|
div.callout-warning.callout-style-default .callout-title { |
|
background-color: #fcefdc |
|
} |
|
|
|
div.callout-tip { |
|
border-left-color: #02b875 !important; |
|
} |
|
|
|
div.callout-tip .callout-icon::before { |
|
background-image: url(''); |
|
} |
|
|
|
div.callout-tip.callout-style-default .callout-title { |
|
background-color: #ccf1e3 |
|
} |
|
|
|
div.callout-caution { |
|
border-left-color: #fd7e14 !important; |
|
} |
|
|
|
div.callout-caution .callout-icon::before { |
|
background-image: url(''); |
|
} |
|
|
|
div.callout-caution.callout-style-default .callout-title { |
|
background-color: #ffe5d0 |
|
} |
|
|
|
</style> |
|
<style type="text/css"> |
|
.reveal div.sourceCode { |
|
margin: 0; |
|
overflow: auto; |
|
} |
|
.reveal div.hanging-indent { |
|
margin-left: 1em; |
|
text-indent: -1em; |
|
} |
|
.reveal .slide:not(.center) { |
|
height: 100%; |
|
} |
|
.reveal .slide.scrollable { |
|
overflow-y: auto; |
|
} |
|
.reveal .footnotes { |
|
height: 100%; |
|
overflow-y: auto; |
|
} |
|
.reveal .slide .absolute { |
|
position: absolute; |
|
display: block; |
|
} |
|
.reveal .footnotes ol { |
|
counter-reset: ol; |
|
list-style-type: none; |
|
margin-left: 0; |
|
} |
|
.reveal .footnotes ol li:before { |
|
counter-increment: ol; |
|
content: counter(ol) ". "; |
|
} |
|
.reveal .footnotes ol li > p:first-child { |
|
display: inline-block; |
|
} |
|
.reveal .slide ul, |
|
.reveal .slide ol { |
|
margin-bottom: 0.5em; |
|
} |
|
.reveal .slide ul li, |
|
.reveal .slide ol li { |
|
margin-top: 0.4em; |
|
margin-bottom: 0.2em; |
|
} |
|
.reveal .slide ul[role="tablist"] li { |
|
margin-bottom: 0; |
|
} |
|
.reveal .slide ul li > *:first-child, |
|
.reveal .slide ol li > *:first-child { |
|
margin-block-start: 0; |
|
} |
|
.reveal .slide ul li > *:last-child, |
|
.reveal .slide ol li > *:last-child { |
|
margin-block-end: 0; |
|
} |
|
.reveal .slide .columns:nth-child(3) { |
|
margin-block-start: 0.8em; |
|
} |
|
.reveal blockquote { |
|
box-shadow: none; |
|
} |
|
.reveal .tippy-content>* { |
|
margin-top: 0.2em; |
|
margin-bottom: 0.7em; |
|
} |
|
.reveal .tippy-content>*:last-child { |
|
margin-bottom: 0.2em; |
|
} |
|
.reveal .slide > img.stretch.quarto-figure-center, |
|
.reveal .slide > img.r-stretch.quarto-figure-center { |
|
display: block; |
|
margin-left: auto; |
|
margin-right: auto; |
|
} |
|
.reveal .slide > img.stretch.quarto-figure-left, |
|
.reveal .slide > img.r-stretch.quarto-figure-left { |
|
display: block; |
|
margin-left: 0; |
|
margin-right: auto; |
|
} |
|
.reveal .slide > img.stretch.quarto-figure-right, |
|
.reveal .slide > img.r-stretch.quarto-figure-right { |
|
display: block; |
|
margin-left: auto; |
|
margin-right: 0; |
|
} |
|
</style> |
|
<script src="llm_conf_files/libs/quarto-diagram/mermaid.min.js"></script> |
|
<script src="llm_conf_files/libs/quarto-diagram/mermaid-init.js"></script> |
|
<link href="llm_conf_files/libs/quarto-diagram/mermaid.css" rel="stylesheet"> |
|
</head> |
|
<body class="quarto-dark"> |
|
<div class="reveal"> |
|
<div class="slides"> |
|
|
|
<section id="title-slide" class="quarto-title-block center"> |
|
<h1 class="title">Scaling Model Training with More Compute, How Do They Do It?</h1> |
|
|
|
<div class="quarto-title-authors"> |
|
</div> |
|
|
|
</section> |
|
<section id="who-am-i" class="slide level2"> |
|
<h2>Who am I?</h2> |
|
<ul> |
|
<li>Zachary Mueller</li> |
|
<li>Technical Lead for the 🤗 Accelerate project</li> |
|
<li>API design geek</li> |
|
</ul> |
|
</section> |
|
<section id="understanding-gpu-usage" class="slide level2"> |
|
<h2>Understanding GPU Usage</h2> |
|
<ul> |
|
<li>We can somewhat estimate the memory usage in vanilla full-fine-tuning of models</li> |
|
<li>Requires certain assumptions (that I’ll be covering): |
|
<ul> |
|
<li>Adam optimizer</li> |
|
<li>Batch size of 1</li> |
|
</ul></li> |
|
</ul> |
|
</section> |
|
<section id="understanding-gpu-usage-1" class="slide level2"> |
|
<h2>Understanding GPU Usage</h2> |
|
<p>General estimate (<code>bert-base-cased</code>, 108M params):</p> |
|
<ul> |
|
<li>Each parameter is 4 bytes</li> |
|
<li>Backward ~= 2x the model size</li> |
|
<li>The optimizer step ~= 4x the model size (1x model, 1x gradients, 2x optimizer):</li> |
|
</ul> |
|
<div style="font-size: 50%;"> |
|
<table> |
|
<thead> |
|
<tr class="header"> |
|
<th>dtype</th> |
|
<th style="text-align: left;">Model</th> |
|
<th style="text-align: center;">Gradients</th> |
|
<th style="text-align: center;">Backward pass</th> |
|
<th style="text-align: center;">Optimizer step</th> |
|
<th style="text-align: center;">Highest</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr class="odd"> |
|
<td>float32</td> |
|
<td style="text-align: left;">413.18 MB</td> |
|
<td style="text-align: center;">413.18 MB</td> |
|
<td style="text-align: center;">826.36 MB</td> |
|
<td style="text-align: center;">1.61 GB</td> |
|
<td style="text-align: center;">1.61 GB</td> |
|
</tr> |
|
<tr class="even"> |
|
<td>float16</td> |
|
<td style="text-align: left;">413.18 MB*</td> |
|
<td style="text-align: center;">619.77 MB</td> |
|
<td style="text-align: center;">826.36 MB</td> |
|
<td style="text-align: center;">826.36 MB</td> |
|
<td style="text-align: center;">826.36 MB</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
<p>*All estimations were based off the <a href="https://huggingface.co/spaces/hf-accelerate/model-memory-usage">Model Estimator Tool</a></p> |
|
</div> |
|
</section> |
|
<section id="understanding-gpu-usage-2" class="slide level2"> |
|
<h2>Understanding GPU Usage</h2> |
|
<p>This works fine for small models, we have cards with anywhere from 12-24GB of GPU memory (on the GPU-poor side).</p> |
|
<p>But what happens as we scale?</p> |
|
<p>Here’s <code>llama-3-8B</code> (8.03B parameters)</p> |
|
<div style="font-size: 50%;"> |
|
<table> |
|
<thead> |
|
<tr class="header"> |
|
<th>dtype</th> |
|
<th style="text-align: left;">Model</th> |
|
<th style="text-align: center;">Gradients</th> |
|
<th style="text-align: center;">Backward pass</th> |
|
<th style="text-align: center;">Optimizer step</th> |
|
<th style="text-align: center;">Highest</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr class="odd"> |
|
<td>float32</td> |
|
<td style="text-align: left;">28.21 GB</td> |
|
<td style="text-align: center;">28.21 GB</td> |
|
<td style="text-align: center;">56.43 GB</td> |
|
<td style="text-align: center;">112.84 GB</td> |
|
<td style="text-align: center;">112.84 GB</td> |
|
</tr> |
|
<tr class="even"> |
|
<td>float16</td> |
|
<td style="text-align: left;">28.21 GB*</td> |
|
<td style="text-align: center;">42.32 GB</td> |
|
<td style="text-align: center;">56.43 GB</td> |
|
<td style="text-align: center;">56.43 GB</td> |
|
<td style="text-align: center;">56.43 GB</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
</div> |
|
<p>Well, <em>I</em> don’t have 56GB of GPU memory in a single card, let alone 112GB.</p> |
|
<p>What can we do?</p> |
|
</section> |
|
<section> |
|
<section id="distributed-training" class="title-slide slide level1 center"> |
|
<h1>Distributed Training</h1> |
|
|
|
</section> |
|
<section id="kinds-of-training" class="slide level2"> |
|
<h2>Kinds of Training</h2> |
|
<ul> |
|
<li>Single GPU: |
|
<ul> |
|
<li>No distributed techniques at play</li> |
|
</ul></li> |
|
<li>Distributed Data Parallelism (DDP): |
|
<ul> |
|
<li>A full copy of the model exists on each device, but data is chunked between each GPU</li> |
|
</ul></li> |
|
<li>Fully Sharded Data Parallelism (FSDP) & DeepSpeed (DS): |
|
<ul> |
|
<li>Split chunks of the model and optimizer states across GPUs, allowing for training bigger models on smaller (multiple) GPUs</li> |
|
</ul></li> |
|
</ul> |
|
</section></section> |
|
<section> |
|
<section id="fully-sharded-data-parallelism" class="title-slide slide level1 center"> |
|
<h1>Fully Sharded Data Parallelism</h1> |
|
|
|
</section> |
|
<section id="fully-sharded-data-parallelism-1" class="slide level2"> |
|
<h2>Fully Sharded Data Parallelism</h2> |
|
|
|
<img data-src="fsdp.png" id="fig-539a35d47e664c97a50115a146a7f1bd-1" class="r-stretch quarto-figure-center"><aside class="notes"> |
|
<ul> |
|
<li>Take the model and split it across <code>n</code> GPUs</li> |
|
<li>Each GPU computes the shard’s gradients</li> |
|
<li>At the end, all gradients are synchronized and the final full model gradient is calculated</li> |
|
<li>The backward pass can then be performed</li> |
|
</ul> |
|
<style type="text/css"> |
|
span.MJX_Assistive_MathML { |
|
position:absolute!important; |
|
clip: rect(1px, 1px, 1px, 1px); |
|
padding: 1px 0 0 0!important; |
|
border: 0!important; |
|
height: 1px!important; |
|
width: 1px!important; |
|
overflow: hidden!important; |
|
display:block!important; |
|
}</style></aside> |
|
</section> |
|
<section id="fsdp-getting-parameter-specific" class="slide level2"> |
|
<h2>FSDP: Getting parameter specific</h2> |
|
<ul> |
|
<li>Different parameters can dicatate how much memory is needed for total GPU training across multiple GPUs</li> |
|
<li>These include how model weights are sharded, gradients, and more.</li> |
|
<li>I’ll cover some important ones I needed when doing a Full-Fine-Tune of Llama-3-8B <em>without PEFT</em> on 2x4090’s</li> |
|
</ul> |
|
</section> |
|
<section id="sharding_strategy" class="slide level2"> |
|
<h2><code>sharding_strategy</code></h2> |
|
<ul> |
|
<li>Dictates the level of divving resources to perform |
|
<ul> |
|
<li><code>FULL_SHARD</code>: Includes optimizer states, gradients, and parameters</li> |
|
<li><code>SHARD_GRAD_OP</code>: Includes optimizer states and gradients</li> |
|
<li><code>NO_SHARD</code>: Normal DDP</li> |
|
<li><code>HYBRID_SHARD</code>: Includes optimizer states, gradients, and parameters but each node has the full model</li> |
|
</ul> |
|
<aside class="notes"> |
|
<pre><code>FULL_SHARD: |
|
Parameters, Gradients, Optimizer States: All are sharded. |
|
Parameters Handling: Unshard before forward pass, reshard after forward pass, unshard before backward pass, reshard after backward pass. |
|
Gradients Handling: Synchronize and shard after backward pass. |
|
Optimizer States: Updated locally per rank.</code></pre> |
|
<p>SHARD_GRAD_OP: Gradients and Optimizer States: Sharded during computation. Parameters: Unshard before forward pass, remain unsharded during forward pass, reshard after backward pass. Inside no_sync(): Parameters are not resharded after backward computation. Optimizer States: Updated locally per rank.</p> |
|
<p>NO_SHARD: Parameters, Gradients, Optimizer States: Not sharded, replicated across ranks. Gradients Handling: Synchronized via all-reduce after backward pass. Optimizer States: Updated locally per rank.</p> |
|
<p>HYBRID_SHARD: Parameters, Gradients, Optimizer States: Combines FULL_SHARD within a node and replicates parameters across nodes. Communication: Expensive operations like all-gathers and reduce-scatters are limited to within a node, enhancing performance for medium-sized models.</p> |
|
<style type="text/css"> |
|
span.MJX_Assistive_MathML { |
|
position:absolute!important; |
|
clip: rect(1px, 1px, 1px, 1px); |
|
padding: 1px 0 0 0!important; |
|
border: 0!important; |
|
height: 1px!important; |
|
width: 1px!important; |
|
overflow: hidden!important; |
|
display:block!important; |
|
}</style></aside></li> |
|
</ul> |
|
</section> |
|
<section id="auto_wrap_policy" class="slide level2"> |
|
<h2><code>auto_wrap_policy</code>:</h2> |
|
<ul> |
|
<li>How the model should be split</li> |
|
<li>Can be either <code>TRANSFORMER_BASED_WRAP</code> or <code>SIZE_BASED_WRAP</code></li> |
|
<li><code>TRANSFORMER</code>/<code>fsdp_transformers_layer_cls_to_wrap</code>: |
|
<ul> |
|
<li>Need to declare the layer</li> |
|
<li>Generally <code>transformers</code> has good defaults</li> |
|
</ul></li> |
|
<li><code>SIZE</code>/<code>fsdp_min_num_param</code>: |
|
<ul> |
|
<li>Number of total parameters in a shard</li> |
|
</ul></li> |
|
</ul> |
|
</section> |
|
<section id="offload_params" class="slide level2"> |
|
<h2><code>offload_params</code>:</h2> |
|
<ul> |
|
<li>Offloads the parameters and gradients to the CPU if they can’t fit into memory</li> |
|
<li>Allows you to train much larger models locally, but will be much slower</li> |
|
</ul> |
|
<blockquote> |
|
<p>Case: FFT of Llama-3-8B with <code>fsdp_offload_params</code> on 2x4090 GPUs was 72hrs, vs ~an hour or two when using 1xH100</p> |
|
</blockquote> |
|
</section> |
|
<section id="cpu_ram_efficient_loading-and-sync_module_states" class="slide level2"> |
|
<h2><code>cpu_ram_efficient_loading</code> and <code>sync_module_states</code></h2> |
|
<ul> |
|
<li>Uses the idea behind big model inference/the <code>meta</code> device to load in the model to the GPU in a low-ram scenario</li> |
|
<li>Rather than needing <code>model_size</code> * <code>n_gpus</code> RAM, we can load the model on a single node and then send the weights directly to each shard when the time is right via <code>sync_module_states</code></li> |
|
</ul> |
|
</section></section> |
|
<section> |
|
<section id="tying-this-to-accelerate" class="title-slide slide level1 center"> |
|
<h1>Tying this to 🤗 Accelerate</h1> |
|
|
|
</section> |
|
<section id="tying-this-to-accelerate-1" class="slide level2"> |
|
<h2>Tying this to 🤗 Accelerate</h2> |
|
<ul> |
|
<li>So far we’ve covered the theory, but how do we put it into practice</li> |
|
<li>By using a library that’s at the heart of the entire open-source ecosystem</li> |
|
</ul> |
|
<div style="font-size: 60%;padding-left:10%;padding-top:0%;"> |
|
<ul> |
|
<li>Nearly all of 🤗</li> |
|
<li><code>axolotl</code></li> |
|
<li><code>fastai</code></li> |
|
<li><code>FastChat</code></li> |
|
<li><code>lucidrains</code></li> |
|
<li><code>kornia</code></li> |
|
</ul> |
|
</div> |
|
<p>Are you using it and you don’t even know?</p> |
|
</section> |
|
<section id="what-is-accelerate" class="slide level2"> |
|
<h2>What is 🤗 Accelerate?</h2> |
|
<div class="cell" data-reveal="true" data-fig-height="6"> |
|
<div class="cell-output-display"> |
|
<div> |
|
<div> |
|
<pre class="mermaid mermaid-js">graph LR |
|
A(("🤗 Accelerate#32;")) |
|
A --> B["CLI Interface#32;"] |
|
A --> C["Training Library#32;"] |
|
A --> D["Big Model<br>Inference#32;"] |
|
</pre> |
|
</div> |
|
</div> |
|
</div> |
|
</div> |
|
</section> |
|
<section id="a-cli-interface" class="slide level2"> |
|
<h2>A CLI Interface</h2> |
|
<ul> |
|
<li><code>accelerate config</code> |
|
<ul> |
|
<li>Configure the environment</li> |
|
</ul></li> |
|
<li><code>accelerate estimate-memory</code> |
|
<ul> |
|
<li>How to guess vRAM requirements</li> |
|
</ul></li> |
|
<li><code>accelerate launch</code> |
|
<ul> |
|
<li>How to run your script</li> |
|
</ul></li> |
|
</ul> |
|
</section> |
|
<section id="launching-distributed-training-is-hard" class="slide level2"> |
|
<h2>Launching distributed training is hard</h2> |
|
<ul> |
|
<li><div class="sourceCode" id="cb2"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb2-1"><a href="#cb2-1"></a><span class="ex">python</span> script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li> |
|
<li><div class="sourceCode" id="cb3"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb3-1"><a href="#cb3-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li> |
|
<li><div class="sourceCode" id="cb4"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb4-1"><a href="#cb4-1"></a><span class="ex">deepspeed</span> <span class="at">--num_gpus</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li> |
|
</ul> |
|
<p>How can we make this better?</p> |
|
</section> |
|
<section id="accelerate-launch" class="slide level2"> |
|
<h2><code>accelerate launch</code></h2> |
|
<div class="sourceCode" id="cb5"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb5-1"><a href="#cb5-1"></a><span class="ex">accelerate</span> launch script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</section> |
|
<section id="accelerate-config" class="slide level2"> |
|
<h2><code>accelerate config</code></h2> |
|
<ul> |
|
<li>Rely on <code>config.yaml</code> files</li> |
|
<li>Choose to either running <code>accelerate config</code> or write your own:</li> |
|
</ul> |
|
<div class="columns" style="font-size: 50%;padding-left:10%;"> |
|
<div class="column" style="width:40%;"> |
|
<div class="code-with-filename"> |
|
<div class="code-with-filename-file"> |
|
<pre><strong>ddp_config.yaml</strong></pre> |
|
</div> |
|
<div class="sourceCode" id="cb6" data-filename="ddp_config.yaml"><pre class="sourceCode numberSource yaml number-lines code-with-copy"><code class="sourceCode yaml"><span id="cb6-1"><a href="#cb6-1"></a><span class="fu">compute_environment</span><span class="kw">:</span><span class="at"> LOCAL_MACHINE</span></span> |
|
<span id="cb6-2"><a href="#cb6-2"></a><span class="fu">distributed_type</span><span class="kw">:</span><span class="at"> MULTI_GPU</span></span> |
|
<span id="cb6-3"><a href="#cb6-3"></a><span class="fu">main_training_function</span><span class="kw">:</span><span class="at"> main</span></span> |
|
<span id="cb6-4"><a href="#cb6-4"></a><span class="fu">mixed_precision</span><span class="kw">:</span><span class="at"> bf16</span></span> |
|
<span id="cb6-5"><a href="#cb6-5"></a><span class="fu">num_machines</span><span class="kw">:</span><span class="at"> </span><span class="dv">1</span></span> |
|
<span id="cb6-6"><a href="#cb6-6"></a><span class="fu">num_processes</span><span class="kw">:</span><span class="at"> </span><span class="dv">8</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</div> |
|
</div><div class="column" style="width:40%;"> |
|
<div class="code-with-filename"> |
|
<div class="code-with-filename-file"> |
|
<pre><strong>fsdp_config.yaml</strong></pre> |
|
</div> |
|
<div class="sourceCode" id="cb7" data-filename="fsdp_config.yaml"><pre class="sourceCode numberSource yaml number-lines code-with-copy"><code class="sourceCode yaml"><span id="cb7-1"><a href="#cb7-1"></a><span class="fu">compute_environment</span><span class="kw">:</span><span class="at"> LOCAL_MACHINE</span></span> |
|
<span id="cb7-2"><a href="#cb7-2"></a><span class="fu">distributed_type</span><span class="kw">:</span><span class="at"> FSDP</span></span> |
|
<span id="cb7-3"><a href="#cb7-3"></a><span class="fu">fsdp_config</span><span class="kw">:</span></span> |
|
<span id="cb7-4"><a href="#cb7-4"></a><span class="at"> </span><span class="fu">fsdp_auto_wrap_policy</span><span class="kw">:</span><span class="at"> TRANSFORMER_BASED_WRAP</span></span> |
|
<span id="cb7-5"><a href="#cb7-5"></a><span class="at"> </span><span class="fu">fsdp_backward_prefetch</span><span class="kw">:</span><span class="at"> BACKWARD_PRE</span></span> |
|
<span id="cb7-6"><a href="#cb7-6"></a><span class="at"> </span><span class="fu">fsdp_cpu_ram_efficient_loading</span><span class="kw">:</span><span class="at"> </span><span class="ch">true</span></span> |
|
<span id="cb7-7"><a href="#cb7-7"></a><span class="at"> </span><span class="fu">fsdp_forward_prefetch</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span> |
|
<span id="cb7-8"><a href="#cb7-8"></a><span class="at"> </span><span class="fu">fsdp_offload_params</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span> |
|
<span id="cb7-9"><a href="#cb7-9"></a><span class="at"> </span><span class="fu">fsdp_sharding_strategy</span><span class="kw">:</span><span class="at"> FULL_SHARD</span></span> |
|
<span id="cb7-10"><a href="#cb7-10"></a><span class="at"> </span><span class="fu">fsdp_state_dict_type</span><span class="kw">:</span><span class="at"> SHARDED_STATE_DICT</span></span> |
|
<span id="cb7-11"><a href="#cb7-11"></a><span class="at"> </span><span class="fu">fsdp_sync_module_states</span><span class="kw">:</span><span class="at"> </span><span class="ch">true</span></span> |
|
<span id="cb7-12"><a href="#cb7-12"></a><span class="at"> </span><span class="fu">fsdp_use_orig_params</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span> |
|
<span id="cb7-13"><a href="#cb7-13"></a><span class="fu">main_training_function</span><span class="kw">:</span><span class="at"> main</span></span> |
|
<span id="cb7-14"><a href="#cb7-14"></a><span class="fu">mixed_precision</span><span class="kw">:</span><span class="at"> bf16</span></span> |
|
<span id="cb7-15"><a href="#cb7-15"></a><span class="fu">num_machines</span><span class="kw">:</span><span class="at"> </span><span class="dv">1</span></span> |
|
<span id="cb7-16"><a href="#cb7-16"></a><span class="fu">num_processes</span><span class="kw">:</span><span class="at"> </span><span class="dv">8</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</div> |
|
</div> |
|
</div> |
|
</section></section> |
|
<section> |
|
<section id="a-training-library" class="title-slide slide level1 center"> |
|
<h1>A Training Library</h1> |
|
|
|
</section> |
|
<section id="a-training-library-the-code" class="slide level2"> |
|
<h2>A Training Library: The Code</h2> |
|
<div class="columns" style="font-size: 50%;"> |
|
<div class="column"> |
|
<p><br><br><br></p> |
|
<div class="sourceCode" id="cb8" data-code-line-numbers="5-6,9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1"></a><span class="co"># For alignment purposes</span></span> |
|
<span id="cb8-2"><a href="#cb8-2"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span> |
|
<span id="cb8-3"><a href="#cb8-3"></a> optimizer.zero_grad()</span> |
|
<span id="cb8-4"><a href="#cb8-4"></a> inputs, targets <span class="op">=</span> batch</span> |
|
<span id="cb8-5"><a href="#cb8-5"></a> inputs <span class="op">=</span> inputs.to(device)</span> |
|
<span id="cb8-6"><a href="#cb8-6"></a> targets <span class="op">=</span> targets.to(device)</span> |
|
<span id="cb8-7"><a href="#cb8-7"></a> outputs <span class="op">=</span> model(inputs)</span> |
|
<span id="cb8-8"><a href="#cb8-8"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span> |
|
<span id="cb8-9"><a href="#cb8-9"></a> loss.backward()</span> |
|
<span id="cb8-10"><a href="#cb8-10"></a> optimizer.step()</span> |
|
<span id="cb8-11"><a href="#cb8-11"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</div><div class="column"> |
|
<div class="sourceCode" id="cb9" data-code-line-numbers="1-7,12-13,16"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span> |
|
<span id="cb9-2"><a href="#cb9-2"></a>accelerator <span class="op">=</span> Accelerator()</span> |
|
<span id="cb9-3"><a href="#cb9-3"></a>dataloader, model, optimizer scheduler <span class="op">=</span> (</span> |
|
<span id="cb9-4"><a href="#cb9-4"></a> accelerator.prepare(</span> |
|
<span id="cb9-5"><a href="#cb9-5"></a> dataloader, model, optimizer, scheduler</span> |
|
<span id="cb9-6"><a href="#cb9-6"></a> )</span> |
|
<span id="cb9-7"><a href="#cb9-7"></a>)</span> |
|
<span id="cb9-8"><a href="#cb9-8"></a></span> |
|
<span id="cb9-9"><a href="#cb9-9"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span> |
|
<span id="cb9-10"><a href="#cb9-10"></a> optimizer.zero_grad()</span> |
|
<span id="cb9-11"><a href="#cb9-11"></a> inputs, targets <span class="op">=</span> batch</span> |
|
<span id="cb9-12"><a href="#cb9-12"></a> <span class="co"># inputs = inputs.to(device)</span></span> |
|
<span id="cb9-13"><a href="#cb9-13"></a> <span class="co"># targets = targets.to(device)</span></span> |
|
<span id="cb9-14"><a href="#cb9-14"></a> outputs <span class="op">=</span> model(inputs)</span> |
|
<span id="cb9-15"><a href="#cb9-15"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span> |
|
<span id="cb9-16"><a href="#cb9-16"></a> accelerator.backward(loss) <span class="co"># loss.backward()</span></span> |
|
<span id="cb9-17"><a href="#cb9-17"></a> optimizer.step()</span> |
|
<span id="cb9-18"><a href="#cb9-18"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> |
|
</div> |
|
</div> |
|
</section> |
|
<section id="a-training-library-how-scaling-works" class="slide level2"> |
|
<h2>A Training Library: How Scaling Works</h2> |
|
<ul> |
|
<li>Accelerate’s DataLoaders and schedulers work off of a sharding mindset</li> |
|
<li>Rather than repeating the same data across <code>n</code> nodes, we instead split it</li> |
|
<li>Speeds up training linearly</li> |
|
<li>Given a batch size of 16 on a single GPU, to recreate this across 8 GPUs you would use a batch size of 2</li> |
|
<li>This also means the scheduler will be stepped <code>n</code> GPUs at a time per “global step”</li> |
|
</ul> |
|
</section> |
|
<section id="a-training-library-mixed-precision" class="slide level2"> |
|
<h2>A Training Library: Mixed Precision</h2> |
|
<ul> |
|
<li>This may be a bit different than your “normal” idea of mixed precision.</li> |
|
<li>We do <strong>not</strong> convert the model weights to BF16/FP16</li> |
|
<li>Instead we <strong>wrap the forward pass</strong> with <code>autocast</code> to convert the gradients automatically</li> |
|
<li>This preserves the original precision of the weights, which leads to stable training and better fine-tuning later on.</li> |
|
<li><strong>If you use <code>.bf16()</code> weights, you are STUCK in bf16 perminantly</strong></li> |
|
</ul> |
|
</section> |
|
<section id="a-training-library-mixed-precision-1" class="slide level2"> |
|
<h2>A Training Library: Mixed Precision</h2> |
|
<ul> |
|
<li>Let’s tie that back up to the model estimator with neat tools like NVIDIA’s TransformerEngine</li> |
|
</ul> |
|
<div style="font-size: 60%;"> |
|
<table style="width:100%;"> |
|
<colgroup> |
|
<col style="width: 14%"> |
|
<col style="width: 14%"> |
|
<col style="width: 14%"> |
|
<col style="width: 14%"> |
|
<col style="width: 14%"> |
|
<col style="width: 14%"> |
|
<col style="width: 14%"> |
|
</colgroup> |
|
<thead> |
|
<tr class="header"> |
|
<th>Optimization Level</th> |
|
<th>Computation (GEMM)</th> |
|
<th>Comm</th> |
|
<th>Weight</th> |
|
<th>Master Weight</th> |
|
<th>Weight Gradient</th> |
|
<th>Optimizer States</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr class="odd"> |
|
<td>FP16 AMP</td> |
|
<td>FP16</td> |
|
<td>FP32</td> |
|
<td>FP32</td> |
|
<td>N/A</td> |
|
<td>FP32</td> |
|
<td>FP32+FP32</td> |
|
</tr> |
|
<tr class="even"> |
|
<td>Nvidia TE</td> |
|
<td>FP8</td> |
|
<td>FP32</td> |
|
<td>FP32</td> |
|
<td>N/A</td> |
|
<td>FP32</td> |
|
<td>FP32+FP32</td> |
|
</tr> |
|
<tr class="odd"> |
|
<td>MS-AMP O1</td> |
|
<td>FP8</td> |
|
<td>FP8</td> |
|
<td>FP16</td> |
|
<td>N/A</td> |
|
<td>FP8</td> |
|
<td>FP32+FP32</td> |
|
</tr> |
|
<tr class="even"> |
|
<td>MS-AMP O2</td> |
|
<td>FP8</td> |
|
<td>FP8</td> |
|
<td>FP16</td> |
|
<td>N/A</td> |
|
<td>FP8</td> |
|
<td>FP8+FP16</td> |
|
</tr> |
|
<tr class="odd"> |
|
<td>MS-AMP O3</td> |
|
<td>FP8</td> |
|
<td>FP8</td> |
|
<td>FP8</td> |
|
<td>FP16</td> |
|
<td>FP8</td> |
|
<td>FP8+FP16</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
</div> |
|
<aside class="notes"> |
|
<p>What is actually happening: * Linear Layers and other certain compatible layers are wrapped in a special version that allows for FP8 computation * The general forward pass is wrapped around BF16 * This means that the most memory saved is done during the gradients of the model, <em>not</em> the model itself. * With tools like <code>MS-AMP</code> we can convert more chunks into lower precision, but again like before stable training occurs when the models weights are in full precision and the backprop happens in full precision too.</p> |
|
<style type="text/css"> |
|
span.MJX_Assistive_MathML { |
|
position:absolute!important; |
|
clip: rect(1px, 1px, 1px, 1px); |
|
padding: 1px 0 0 0!important; |
|
border: 0!important; |
|
height: 1px!important; |
|
width: 1px!important; |
|
overflow: hidden!important; |
|
display:block!important; |
|
}</style></aside> |
|
</section> |
|
<section id="deepspeed-vs-fully-sharded-data-parallelism" class="slide level2"> |
|
<h2>DeepSpeed vs Fully Sharded Data Parallelism</h2> |
|
<ul> |
|
<li>Extremely similar, however mostly used different naming conventions for items and slight tweaks in the implementation</li> |
|
</ul> |
|
<div style="font-size: 50%;"> |
|
<table style="width:100%;"> |
|
<colgroup> |
|
<col style="width: 16%"> |
|
<col style="width: 16%"> |
|
<col style="width: 16%"> |
|
<col style="width: 16%"> |
|
<col style="width: 16%"> |
|
<col style="width: 16%"> |
|
</colgroup> |
|
<thead> |
|
<tr class="header"> |
|
<th>Framework</th> |
|
<th>Model Loading (<code>torch_dtype</code>)</th> |
|
<th>Mixed Precision</th> |
|
<th>Preparation (Local)</th> |
|
<th>Training</th> |
|
<th>Optimizer (Local)</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr class="odd"> |
|
<td>FSDP</td> |
|
<td>bf16</td> |
|
<td>default (none)</td> |
|
<td>bf16</td> |
|
<td>bf16</td> |
|
<td>bf16</td> |
|
</tr> |
|
<tr class="even"> |
|
<td>FSDP</td> |
|
<td>bf16</td> |
|
<td>bf16</td> |
|
<td>fp32</td> |
|
<td>bf16</td> |
|
<td>fp32</td> |
|
</tr> |
|
<tr class="odd"> |
|
<td>DeepSpeed</td> |
|
<td>bf16</td> |
|
<td>bf16</td> |
|
<td>fp32</td> |
|
<td>bf16</td> |
|
<td>fp32</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
</div> |
|
<p>To learn more, check out the <a href="https://huggingface.co/docs/accelerate/concept_guides/fsdp_and_deepspeed">documentation</a> or join my office hours</p> |
|
</section> |
|
<section id="key-takeaways" class="slide level2"> |
|
<h2>Key Takeaways:</h2> |
|
<ul> |
|
<li>You can scale out training with <code>accelerate</code>, FSDP, and DeepSpeed across multiple GPUs to train bigger models</li> |
|
<li>Techniques like <code>FP8</code> can help speed up training some and reduce computational overhead</li> |
|
<li>Comes at a cost of end-precision and locking model weights for futher fine-tunes if not careful</li> |
|
</ul> |
|
</section> |
|
<section id="some-handy-resources" class="slide level2"> |
|
<h2>Some Handy Resources</h2> |
|
<ul> |
|
<li><a href="https://hf.co/docs/accelerate">🤗 Accelerate documentation</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/launch">Launching distributed code</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/notebook">Distributed code and Jupyter Notebooks</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/migration">Migrating to 🤗 Accelerate easily</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/big_modeling">Big Model Inference tutorial</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/deepspeed">DeepSpeed and 🤗 Accelerate</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/fsdp">Fully Sharded Data Parallelism and 🤗 Accelerate</a></li> |
|
<li><a href="https://huggingface.co/docs/accelerate/concept_guides/fsdp_and_deepspeed">FSDP vs DeepSpeed In-Depth</a></li> |
|
</ul> |
|
<div class="footer footer-default"> |
|
|
|
</div> |
|
</section></section> |
|
</div> |
|
</div> |
|
|
|
<script>window.backupDefine = window.define; window.define = undefined;</script> |
|
<script src="llm_conf_files/libs/revealjs/dist/reveal.js"></script> |
|
|
|
<script src="llm_conf_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script> |
|
<script src="llm_conf_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script> |
|
<script src="llm_conf_files/libs/revealjs/plugin/reveal-menu/menu.js"></script> |
|
<script src="llm_conf_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script> |
|
<script src="llm_conf_files/libs/revealjs/plugin/quarto-support/support.js"></script> |
|
|
|
|
|
<script src="llm_conf_files/libs/revealjs/plugin/notes/notes.js"></script> |
|
<script src="llm_conf_files/libs/revealjs/plugin/search/search.js"></script> |
|
<script src="llm_conf_files/libs/revealjs/plugin/zoom/zoom.js"></script> |
|
<script src="llm_conf_files/libs/revealjs/plugin/math/math.js"></script> |
|
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script> |
|
|
|
<script> |
|
|
|
|
|
|
|
Reveal.initialize({ |
|
'controlsAuto': true, |
|
'previewLinksAuto': false, |
|
'pdfSeparateFragments': false, |
|
'autoAnimateEasing': "ease", |
|
'autoAnimateDuration': 1, |
|
'autoAnimateUnmatched': true, |
|
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.togglePdfExport(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true}, |
|
'smaller': false, |
|
|
|
|
|
controls: false, |
|
|
|
|
|
|
|
controlsTutorial: false, |
|
|
|
|
|
controlsLayout: 'edges', |
|
|
|
|
|
|
|
controlsBackArrows: 'faded', |
|
|
|
|
|
progress: true, |
|
|
|
|
|
slideNumber: false, |
|
|
|
|
|
showSlideNumber: 'all', |
|
|
|
|
|
|
|
hash: true, |
|
|
|
|
|
hashOneBasedIndex: false, |
|
|
|
|
|
respondToHashChanges: true, |
|
|
|
|
|
history: true, |
|
|
|
|
|
keyboard: true, |
|
|
|
|
|
overview: true, |
|
|
|
|
|
|
|
disableLayout: false, |
|
|
|
|
|
center: false, |
|
|
|
|
|
touch: true, |
|
|
|
|
|
loop: false, |
|
|
|
|
|
rtl: false, |
|
|
|
|
|
navigationMode: 'linear', |
|
|
|
|
|
shuffle: false, |
|
|
|
|
|
fragments: true, |
|
|
|
|
|
|
|
fragmentInURL: false, |
|
|
|
|
|
|
|
embedded: false, |
|
|
|
|
|
|
|
help: true, |
|
|
|
|
|
pause: true, |
|
|
|
|
|
showNotes: false, |
|
|
|
|
|
autoPlayMedia: null, |
|
|
|
|
|
preloadIframes: null, |
|
|
|
|
|
|
|
|
|
autoSlide: 0, |
|
|
|
|
|
autoSlideStoppable: true, |
|
|
|
|
|
autoSlideMethod: null, |
|
|
|
|
|
|
|
|
|
defaultTiming: null, |
|
|
|
|
|
mouseWheel: false, |
|
|
|
|
|
display: 'block', |
|
|
|
|
|
hideInactiveCursor: true, |
|
|
|
|
|
hideCursorTime: 5000, |
|
|
|
|
|
previewLinks: false, |
|
|
|
|
|
transition: 'none', |
|
|
|
|
|
transitionSpeed: 'default', |
|
|
|
|
|
|
|
backgroundTransition: 'none', |
|
|
|
|
|
viewDistance: 3, |
|
|
|
|
|
|
|
|
|
mobileViewDistance: 2, |
|
|
|
|
|
|
|
|
|
width: 1050, |
|
|
|
height: 700, |
|
|
|
|
|
margin: 0.1, |
|
|
|
math: { |
|
mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js', |
|
config: 'TeX-AMS_HTML-full', |
|
tex2jax: { |
|
inlineMath: [['\\(','\\)']], |
|
displayMath: [['\\[','\\]']], |
|
balanceBraces: true, |
|
processEscapes: false, |
|
processRefs: true, |
|
processEnvironments: true, |
|
preview: 'TeX', |
|
skipTags: ['script','noscript','style','textarea','pre','code'], |
|
ignoreClass: 'tex2jax_ignore', |
|
processClass: 'tex2jax_process' |
|
}, |
|
}, |
|
|
|
|
|
plugins: [QuartoLineHighlight, PdfExport, RevealMenu, QuartoSupport, |
|
|
|
RevealMath, |
|
RevealNotes, |
|
RevealSearch, |
|
RevealZoom |
|
] |
|
}); |
|
</script> |
|
<script id="quarto-html-after-body" type="application/javascript"> |
|
window.document.addEventListener("DOMContentLoaded", function (event) { |
|
const toggleBodyColorMode = (bsSheetEl) => { |
|
const mode = bsSheetEl.getAttribute("data-mode"); |
|
const bodyEl = window.document.querySelector("body"); |
|
if (mode === "dark") { |
|
bodyEl.classList.add("quarto-dark"); |
|
bodyEl.classList.remove("quarto-light"); |
|
} else { |
|
bodyEl.classList.add("quarto-light"); |
|
bodyEl.classList.remove("quarto-dark"); |
|
} |
|
} |
|
const toggleBodyColorPrimary = () => { |
|
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap"); |
|
if (bsSheetEl) { |
|
toggleBodyColorMode(bsSheetEl); |
|
} |
|
} |
|
toggleBodyColorPrimary(); |
|
const tabsets = window.document.querySelectorAll(".panel-tabset-tabby") |
|
tabsets.forEach(function(tabset) { |
|
const tabby = new Tabby('#' + tabset.id); |
|
}); |
|
const isCodeAnnotation = (el) => { |
|
for (const clz of el.classList) { |
|
if (clz.startsWith('code-annotation-')) { |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
const clipboard = new window.ClipboardJS('.code-copy-button', { |
|
text: function(trigger) { |
|
const codeEl = trigger.previousElementSibling.cloneNode(true); |
|
for (const childEl of codeEl.children) { |
|
if (isCodeAnnotation(childEl)) { |
|
childEl.remove(); |
|
} |
|
} |
|
return codeEl.innerText; |
|
} |
|
}); |
|
clipboard.on('success', function(e) { |
|
|
|
const button = e.trigger; |
|
|
|
button.blur(); |
|
|
|
button.classList.add('code-copy-button-checked'); |
|
var currentTitle = button.getAttribute("title"); |
|
button.setAttribute("title", "Copied!"); |
|
let tooltip; |
|
if (window.bootstrap) { |
|
button.setAttribute("data-bs-toggle", "tooltip"); |
|
button.setAttribute("data-bs-placement", "left"); |
|
button.setAttribute("data-bs-title", "Copied!"); |
|
tooltip = new bootstrap.Tooltip(button, |
|
{ trigger: "manual", |
|
customClass: "code-copy-button-tooltip", |
|
offset: [0, -8]}); |
|
tooltip.show(); |
|
} |
|
setTimeout(function() { |
|
if (tooltip) { |
|
tooltip.hide(); |
|
button.removeAttribute("data-bs-title"); |
|
button.removeAttribute("data-bs-toggle"); |
|
button.removeAttribute("data-bs-placement"); |
|
} |
|
button.setAttribute("title", currentTitle); |
|
button.classList.remove('code-copy-button-checked'); |
|
}, 1000); |
|
|
|
e.clearSelection(); |
|
}); |
|
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) { |
|
const config = { |
|
allowHTML: true, |
|
maxWidth: 500, |
|
delay: 100, |
|
arrow: false, |
|
appendTo: function(el) { |
|
return el.closest('section.slide') || el.parentElement; |
|
}, |
|
interactive: true, |
|
interactiveBorder: 10, |
|
theme: 'light-border', |
|
placement: 'bottom-start', |
|
}; |
|
if (contentFn) { |
|
config.content = contentFn; |
|
} |
|
if (onTriggerFn) { |
|
config.onTrigger = onTriggerFn; |
|
} |
|
if (onUntriggerFn) { |
|
config.onUntrigger = onUntriggerFn; |
|
} |
|
config['offset'] = [0,0]; |
|
config['maxWidth'] = 700; |
|
window.tippy(el, config); |
|
} |
|
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]'); |
|
for (var i=0; i<noterefs.length; i++) { |
|
const ref = noterefs[i]; |
|
tippyHover(ref, function() { |
|
|
|
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href'); |
|
try { href = new URL(href).hash; } catch {} |
|
const id = href.replace(/^#\/?/, ""); |
|
const note = window.document.getElementById(id); |
|
return note.innerHTML; |
|
}); |
|
} |
|
const findCites = (el) => { |
|
const parentEl = el.parentElement; |
|
if (parentEl) { |
|
const cites = parentEl.dataset.cites; |
|
if (cites) { |
|
return { |
|
el, |
|
cites: cites.split(' ') |
|
}; |
|
} else { |
|
return findCites(el.parentElement) |
|
} |
|
} else { |
|
return undefined; |
|
} |
|
}; |
|
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]'); |
|
for (var i=0; i<bibliorefs.length; i++) { |
|
const ref = bibliorefs[i]; |
|
const citeInfo = findCites(ref); |
|
if (citeInfo) { |
|
tippyHover(citeInfo.el, function() { |
|
var popup = window.document.createElement('div'); |
|
citeInfo.cites.forEach(function(cite) { |
|
var citeDiv = window.document.createElement('div'); |
|
citeDiv.classList.add('hanging-indent'); |
|
citeDiv.classList.add('csl-entry'); |
|
var biblioDiv = window.document.getElementById('ref-' + cite); |
|
if (biblioDiv) { |
|
citeDiv.innerHTML = biblioDiv.innerHTML; |
|
} |
|
popup.appendChild(citeDiv); |
|
}); |
|
return popup.innerHTML; |
|
}); |
|
} |
|
} |
|
}); |
|
</script> |
|
|
|
|
|
</body></html> |