File size: 60,689 Bytes
1112c3f b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e 71e77cb b06653e 71e77cb b06653e 264a231 b06653e 264a231 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e 71e77cb b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 71e77cb b06653e b0d1496 b06653e b0d1496 b06653e 71e77cb b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 b06653e b0d1496 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 |
<!DOCTYPE html>
<html lang="en"><head>
<script src="llm_conf_files/libs/clipboard/clipboard.min.js"></script>
<script src="llm_conf_files/libs/quarto-html/tabby.min.js"></script>
<script src="llm_conf_files/libs/quarto-html/popper.min.js"></script>
<script src="llm_conf_files/libs/quarto-html/tippy.umd.min.js"></script>
<link href="llm_conf_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="llm_conf_files/libs/quarto-html/light-border.css" rel="stylesheet">
<link href="llm_conf_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="llm_conf_files/libs/quarto-html/quarto-syntax-highlighting-dark.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-99.9.9">
<title>Scaling Model Training with More Compute, How Do They Do It?</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/reset.css">
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/reveal.css">
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ color: #f8f8f2; }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span { color: #f8f8f2; } /* Normal */
code span.al { color: #f07178; background-color: #2a0f15; font-weight: bold; } /* Alert */
code span.an { color: #d4d0ab; } /* Annotation */
code span.at { color: #00e0e0; } /* Attribute */
code span.bn { color: #d4d0ab; } /* BaseN */
code span.bu { color: #abe338; } /* BuiltIn */
code span.cf { color: #ffa07a; font-weight: bold; } /* ControlFlow */
code span.ch { color: #abe338; } /* Char */
code span.cn { color: #ffd700; } /* Constant */
code span.co { color: #f8f8f2; font-style: italic; } /* Comment */
code span.cv { color: #ffd700; } /* CommentVar */
code span.do { color: #f8f8f2; } /* Documentation */
code span.dt { color: #ffa07a; } /* DataType */
code span.dv { color: #d4d0ab; } /* DecVal */
code span.er { color: #f07178; text-decoration: underline; } /* Error */
code span.ex { color: #00e0e0; font-weight: bold; } /* Extension */
code span.fl { color: #d4d0ab; } /* Float */
code span.fu { color: #ffa07a; } /* Function */
code span.im { color: #abe338; } /* Import */
code span.in { color: #d4d0ab; } /* Information */
code span.kw { color: #ffa07a; font-weight: bold; } /* Keyword */
code span.op { color: #ffa07a; } /* Operator */
code span.ot { color: #00e0e0; } /* Other */
code span.pp { color: #dcc6e0; } /* Preprocessor */
code span.re { color: #00e0e0; background-color: #f8f8f2; } /* RegionMarker */
code span.sc { color: #abe338; } /* SpecialChar */
code span.ss { color: #abe338; } /* SpecialString */
code span.st { color: #abe338; } /* String */
code span.va { color: #00e0e0; } /* Variable */
code span.vs { color: #abe338; } /* VerbatimString */
code span.wa { color: #dcc6e0; } /* Warning */
</style>
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/theme/quarto.css">
<link href="llm_conf_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
<link href="llm_conf_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
<link href="llm_conf_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
<link href="llm_conf_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
<style type="text/css">
.callout {
margin-top: 1em;
margin-bottom: 1em;
border-radius: .25rem;
}
.callout.callout-style-simple {
padding: 0em 0.5em;
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
display: flex;
}
.callout.callout-style-default {
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
}
.callout .callout-body-container {
flex-grow: 1;
}
.callout.callout-style-simple .callout-body {
font-size: 1rem;
font-weight: 400;
}
.callout.callout-style-default .callout-body {
font-size: 0.9rem;
font-weight: 400;
}
.callout.callout-titled.callout-style-simple .callout-body {
margin-top: 0.2em;
}
.callout:not(.callout-titled) .callout-body {
display: flex;
}
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
padding-left: 1.6em;
}
.callout.callout-titled .callout-header {
padding-top: 0.2em;
margin-bottom: -0.2em;
}
.callout.callout-titled .callout-title p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.callout.callout-titled.callout-style-simple .callout-content p {
margin-top: 0;
}
.callout.callout-titled.callout-style-default .callout-content p {
margin-top: 0.7em;
}
.callout.callout-style-simple div.callout-title {
border-bottom: none;
font-size: .9rem;
font-weight: 600;
opacity: 75%;
}
.callout.callout-style-default div.callout-title {
border-bottom: none;
font-weight: 600;
opacity: 85%;
font-size: 0.9rem;
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-default div.callout-content {
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-simple .callout-icon::before {
height: 1rem;
width: 1rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 1rem 1rem;
}
.callout.callout-style-default .callout-icon::before {
height: 0.9rem;
width: 0.9rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 0.9rem 0.9rem;
}
.callout-title {
display: flex
}
.callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
.callout.no-icon::before {
display: none !important;
}
.callout.callout-titled .callout-body > .callout-content > :last-child {
padding-bottom: 0.5rem;
margin-bottom: 0;
}
.callout.callout-titled .callout-icon::before {
margin-top: .5rem;
padding-right: .5rem;
}
.callout:not(.callout-titled) .callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
/* Callout Types */
div.callout-note {
border-left-color: #4582ec !important;
}
div.callout-note .callout-icon::before {
background-image: url('');
}
div.callout-note.callout-style-default .callout-title {
background-color: #dae6fb
}
div.callout-important {
border-left-color: #d9534f !important;
}
div.callout-important .callout-icon::before {
background-image: url('');
}
div.callout-important.callout-style-default .callout-title {
background-color: #f7dddc
}
div.callout-warning {
border-left-color: #f0ad4e !important;
}
div.callout-warning .callout-icon::before {
background-image: url('');
}
div.callout-warning.callout-style-default .callout-title {
background-color: #fcefdc
}
div.callout-tip {
border-left-color: #02b875 !important;
}
div.callout-tip .callout-icon::before {
background-image: url('');
}
div.callout-tip.callout-style-default .callout-title {
background-color: #ccf1e3
}
div.callout-caution {
border-left-color: #fd7e14 !important;
}
div.callout-caution .callout-icon::before {
background-image: url('');
}
div.callout-caution.callout-style-default .callout-title {
background-color: #ffe5d0
}
</style>
<style type="text/css">
.reveal div.sourceCode {
margin: 0;
overflow: auto;
}
.reveal div.hanging-indent {
margin-left: 1em;
text-indent: -1em;
}
.reveal .slide:not(.center) {
height: 100%;
}
.reveal .slide.scrollable {
overflow-y: auto;
}
.reveal .footnotes {
height: 100%;
overflow-y: auto;
}
.reveal .slide .absolute {
position: absolute;
display: block;
}
.reveal .footnotes ol {
counter-reset: ol;
list-style-type: none;
margin-left: 0;
}
.reveal .footnotes ol li:before {
counter-increment: ol;
content: counter(ol) ". ";
}
.reveal .footnotes ol li > p:first-child {
display: inline-block;
}
.reveal .slide ul,
.reveal .slide ol {
margin-bottom: 0.5em;
}
.reveal .slide ul li,
.reveal .slide ol li {
margin-top: 0.4em;
margin-bottom: 0.2em;
}
.reveal .slide ul[role="tablist"] li {
margin-bottom: 0;
}
.reveal .slide ul li > *:first-child,
.reveal .slide ol li > *:first-child {
margin-block-start: 0;
}
.reveal .slide ul li > *:last-child,
.reveal .slide ol li > *:last-child {
margin-block-end: 0;
}
.reveal .slide .columns:nth-child(3) {
margin-block-start: 0.8em;
}
.reveal blockquote {
box-shadow: none;
}
.reveal .tippy-content>* {
margin-top: 0.2em;
margin-bottom: 0.7em;
}
.reveal .tippy-content>*:last-child {
margin-bottom: 0.2em;
}
.reveal .slide > img.stretch.quarto-figure-center,
.reveal .slide > img.r-stretch.quarto-figure-center {
display: block;
margin-left: auto;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-left,
.reveal .slide > img.r-stretch.quarto-figure-left {
display: block;
margin-left: 0;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-right,
.reveal .slide > img.r-stretch.quarto-figure-right {
display: block;
margin-left: auto;
margin-right: 0;
}
</style>
<script src="llm_conf_files/libs/quarto-diagram/mermaid.min.js"></script>
<script src="llm_conf_files/libs/quarto-diagram/mermaid-init.js"></script>
<link href="llm_conf_files/libs/quarto-diagram/mermaid.css" rel="stylesheet">
</head>
<body class="quarto-dark">
<div class="reveal">
<div class="slides">
<section id="title-slide" class="quarto-title-block center">
<h1 class="title">Scaling Model Training with More Compute, How Do They Do It?</h1>
<div class="quarto-title-authors">
</div>
</section>
<section id="who-am-i" class="slide level2">
<h2>Who am I?</h2>
<ul>
<li>Zachary Mueller</li>
<li>Technical Lead for the 🤗 Accelerate project</li>
<li>API design geek</li>
</ul>
</section>
<section id="understanding-gpu-usage" class="slide level2">
<h2>Understanding GPU Usage</h2>
<ul>
<li>We can somewhat estimate the memory usage in vanilla full-fine-tuning of models</li>
<li>Requires certain assumptions (that I’ll be covering):
<ul>
<li>Adam optimizer</li>
<li>Batch size of 1</li>
</ul></li>
</ul>
</section>
<section id="understanding-gpu-usage-1" class="slide level2">
<h2>Understanding GPU Usage</h2>
<p>General estimate (<code>bert-base-cased</code>, 108M params):</p>
<ul>
<li>Each parameter is 4 bytes</li>
<li>Backward ~= 2x the model size</li>
<li>The optimizer step ~= 4x the model size (1x model, 1x gradients, 2x optimizer):</li>
</ul>
<div style="font-size: 50%;">
<table>
<thead>
<tr class="header">
<th>dtype</th>
<th style="text-align: left;">Model</th>
<th style="text-align: center;">Gradients</th>
<th style="text-align: center;">Backward pass</th>
<th style="text-align: center;">Optimizer step</th>
<th style="text-align: center;">Highest</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>float32</td>
<td style="text-align: left;">413.18 MB</td>
<td style="text-align: center;">413.18 MB</td>
<td style="text-align: center;">826.36 MB</td>
<td style="text-align: center;">1.61 GB</td>
<td style="text-align: center;">1.61 GB</td>
</tr>
<tr class="even">
<td>float16</td>
<td style="text-align: left;">413.18 MB*</td>
<td style="text-align: center;">619.77 MB</td>
<td style="text-align: center;">826.36 MB</td>
<td style="text-align: center;">826.36 MB</td>
<td style="text-align: center;">826.36 MB</td>
</tr>
</tbody>
</table>
<p>*All estimations were based off the <a href="https://huggingface.co/spaces/hf-accelerate/model-memory-usage">Model Estimator Tool</a></p>
</div>
</section>
<section id="understanding-gpu-usage-2" class="slide level2">
<h2>Understanding GPU Usage</h2>
<p>This works fine for small models, we have cards with anywhere from 12-24GB of GPU memory (on the GPU-poor side).</p>
<p>But what happens as we scale?</p>
<p>Here’s <code>llama-3-8B</code> (8.03B parameters)</p>
<div style="font-size: 50%;">
<table>
<thead>
<tr class="header">
<th>dtype</th>
<th style="text-align: left;">Model</th>
<th style="text-align: center;">Gradients</th>
<th style="text-align: center;">Backward pass</th>
<th style="text-align: center;">Optimizer step</th>
<th style="text-align: center;">Highest</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>float32</td>
<td style="text-align: left;">28.21 GB</td>
<td style="text-align: center;">28.21 GB</td>
<td style="text-align: center;">56.43 GB</td>
<td style="text-align: center;">112.84 GB</td>
<td style="text-align: center;">112.84 GB</td>
</tr>
<tr class="even">
<td>float16</td>
<td style="text-align: left;">28.21 GB*</td>
<td style="text-align: center;">42.32 GB</td>
<td style="text-align: center;">56.43 GB</td>
<td style="text-align: center;">56.43 GB</td>
<td style="text-align: center;">56.43 GB</td>
</tr>
</tbody>
</table>
</div>
<p>Well, <em>I</em> don’t have 56GB of GPU memory in a single card, let alone 112GB.</p>
<p>What can we do?</p>
</section>
<section>
<section id="distributed-training" class="title-slide slide level1 center">
<h1>Distributed Training</h1>
</section>
<section id="kinds-of-training" class="slide level2">
<h2>Kinds of Training</h2>
<ul>
<li>Single GPU:
<ul>
<li>No distributed techniques at play</li>
</ul></li>
<li>Distributed Data Parallelism (DDP):
<ul>
<li>A full copy of the model exists on each device, but data is chunked between each GPU</li>
</ul></li>
<li>Fully Sharded Data Parallelism (FSDP) & DeepSpeed (DS):
<ul>
<li>Split chunks of the model and optimizer states across GPUs, allowing for training bigger models on smaller (multiple) GPUs</li>
</ul></li>
</ul>
</section></section>
<section>
<section id="fully-sharded-data-parallelism" class="title-slide slide level1 center">
<h1>Fully Sharded Data Parallelism</h1>
</section>
<section id="fully-sharded-data-parallelism-1" class="slide level2">
<h2>Fully Sharded Data Parallelism</h2>
<img data-src="fsdp.png" id="fig-539a35d47e664c97a50115a146a7f1bd-1" class="r-stretch quarto-figure-center"><aside class="notes">
<ul>
<li>Take the model and split it across <code>n</code> GPUs</li>
<li>Each GPU computes the shard’s gradients</li>
<li>At the end, all gradients are synchronized and the final full model gradient is calculated</li>
<li>The backward pass can then be performed</li>
</ul>
<style type="text/css">
span.MJX_Assistive_MathML {
position:absolute!important;
clip: rect(1px, 1px, 1px, 1px);
padding: 1px 0 0 0!important;
border: 0!important;
height: 1px!important;
width: 1px!important;
overflow: hidden!important;
display:block!important;
}</style></aside>
</section>
<section id="fsdp-getting-parameter-specific" class="slide level2">
<h2>FSDP: Getting parameter specific</h2>
<ul>
<li>Different parameters can dicatate how much memory is needed for total GPU training across multiple GPUs</li>
<li>These include how model weights are sharded, gradients, and more.</li>
<li>I’ll cover some important ones I needed when doing a Full-Fine-Tune of Llama-3-8B <em>without PEFT</em> on 2x4090’s</li>
</ul>
</section>
<section id="sharding_strategy" class="slide level2">
<h2><code>sharding_strategy</code></h2>
<ul>
<li>Dictates the level of divving resources to perform
<ul>
<li><code>FULL_SHARD</code>: Includes optimizer states, gradients, and parameters</li>
<li><code>SHARD_GRAD_OP</code>: Includes optimizer states and gradients</li>
<li><code>NO_SHARD</code>: Normal DDP</li>
<li><code>HYBRID_SHARD</code>: Includes optimizer states, gradients, and parameters but each node has the full model</li>
</ul>
<aside class="notes">
<pre><code>FULL_SHARD:
Parameters, Gradients, Optimizer States: All are sharded.
Parameters Handling: Unshard before forward pass, reshard after forward pass, unshard before backward pass, reshard after backward pass.
Gradients Handling: Synchronize and shard after backward pass.
Optimizer States: Updated locally per rank.</code></pre>
<p>SHARD_GRAD_OP: Gradients and Optimizer States: Sharded during computation. Parameters: Unshard before forward pass, remain unsharded during forward pass, reshard after backward pass. Inside no_sync(): Parameters are not resharded after backward computation. Optimizer States: Updated locally per rank.</p>
<p>NO_SHARD: Parameters, Gradients, Optimizer States: Not sharded, replicated across ranks. Gradients Handling: Synchronized via all-reduce after backward pass. Optimizer States: Updated locally per rank.</p>
<p>HYBRID_SHARD: Parameters, Gradients, Optimizer States: Combines FULL_SHARD within a node and replicates parameters across nodes. Communication: Expensive operations like all-gathers and reduce-scatters are limited to within a node, enhancing performance for medium-sized models.</p>
<style type="text/css">
span.MJX_Assistive_MathML {
position:absolute!important;
clip: rect(1px, 1px, 1px, 1px);
padding: 1px 0 0 0!important;
border: 0!important;
height: 1px!important;
width: 1px!important;
overflow: hidden!important;
display:block!important;
}</style></aside></li>
</ul>
</section>
<section id="auto_wrap_policy" class="slide level2">
<h2><code>auto_wrap_policy</code>:</h2>
<ul>
<li>How the model should be split</li>
<li>Can be either <code>TRANSFORMER_BASED_WRAP</code> or <code>SIZE_BASED_WRAP</code></li>
<li><code>TRANSFORMER</code>/<code>fsdp_transformers_layer_cls_to_wrap</code>:
<ul>
<li>Need to declare the layer</li>
<li>Generally <code>transformers</code> has good defaults</li>
</ul></li>
<li><code>SIZE</code>/<code>fsdp_min_num_param</code>:
<ul>
<li>Number of total parameters in a shard</li>
</ul></li>
</ul>
</section>
<section id="offload_params" class="slide level2">
<h2><code>offload_params</code>:</h2>
<ul>
<li>Offloads the parameters and gradients to the CPU if they can’t fit into memory</li>
<li>Allows you to train much larger models locally, but will be much slower</li>
</ul>
<blockquote>
<p>Case: FFT of Llama-3-8B with <code>fsdp_offload_params</code> on 2x4090 GPUs was 72hrs, vs ~an hour or two when using 1xH100</p>
</blockquote>
</section>
<section id="cpu_ram_efficient_loading-and-sync_module_states" class="slide level2">
<h2><code>cpu_ram_efficient_loading</code> and <code>sync_module_states</code></h2>
<ul>
<li>Uses the idea behind big model inference/the <code>meta</code> device to load in the model to the GPU in a low-ram scenario</li>
<li>Rather than needing <code>model_size</code> * <code>n_gpus</code> RAM, we can load the model on a single node and then send the weights directly to each shard when the time is right via <code>sync_module_states</code></li>
</ul>
</section></section>
<section>
<section id="tying-this-to-accelerate" class="title-slide slide level1 center">
<h1>Tying this to 🤗 Accelerate</h1>
</section>
<section id="tying-this-to-accelerate-1" class="slide level2">
<h2>Tying this to 🤗 Accelerate</h2>
<ul>
<li>So far we’ve covered the theory, but how do we put it into practice</li>
<li>By using a library that’s at the heart of the entire open-source ecosystem</li>
</ul>
<div style="font-size: 60%;padding-left:10%;padding-top:0%;">
<ul>
<li>Nearly all of 🤗</li>
<li><code>axolotl</code></li>
<li><code>fastai</code></li>
<li><code>FastChat</code></li>
<li><code>lucidrains</code></li>
<li><code>kornia</code></li>
</ul>
</div>
<p>Are you using it and you don’t even know?</p>
</section>
<section id="what-is-accelerate" class="slide level2">
<h2>What is 🤗 Accelerate?</h2>
<div class="cell" data-reveal="true" data-fig-height="6">
<div class="cell-output-display">
<div>
<div>
<pre class="mermaid mermaid-js">graph LR
A(("🤗 Accelerate#32;"))
A --> B["CLI Interface#32;"]
A --> C["Training Library#32;"]
A --> D["Big Model<br>Inference#32;"]
</pre>
</div>
</div>
</div>
</div>
</section>
<section id="a-cli-interface" class="slide level2">
<h2>A CLI Interface</h2>
<ul>
<li><code>accelerate config</code>
<ul>
<li>Configure the environment</li>
</ul></li>
<li><code>accelerate estimate-memory</code>
<ul>
<li>How to guess vRAM requirements</li>
</ul></li>
<li><code>accelerate launch</code>
<ul>
<li>How to run your script</li>
</ul></li>
</ul>
</section>
<section id="launching-distributed-training-is-hard" class="slide level2">
<h2>Launching distributed training is hard</h2>
<ul>
<li><div class="sourceCode" id="cb2"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb2-1"><a href="#cb2-1"></a><span class="ex">python</span> script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
<li><div class="sourceCode" id="cb3"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb3-1"><a href="#cb3-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
<li><div class="sourceCode" id="cb4"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb4-1"><a href="#cb4-1"></a><span class="ex">deepspeed</span> <span class="at">--num_gpus</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
</ul>
<p>How can we make this better?</p>
</section>
<section id="accelerate-launch" class="slide level2">
<h2><code>accelerate launch</code></h2>
<div class="sourceCode" id="cb5"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb5-1"><a href="#cb5-1"></a><span class="ex">accelerate</span> launch script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="accelerate-config" class="slide level2">
<h2><code>accelerate config</code></h2>
<ul>
<li>Rely on <code>config.yaml</code> files</li>
<li>Choose to either running <code>accelerate config</code> or write your own:</li>
</ul>
<div class="columns" style="font-size: 50%;padding-left:10%;">
<div class="column" style="width:40%;">
<div class="code-with-filename">
<div class="code-with-filename-file">
<pre><strong>ddp_config.yaml</strong></pre>
</div>
<div class="sourceCode" id="cb6" data-filename="ddp_config.yaml"><pre class="sourceCode numberSource yaml number-lines code-with-copy"><code class="sourceCode yaml"><span id="cb6-1"><a href="#cb6-1"></a><span class="fu">compute_environment</span><span class="kw">:</span><span class="at"> LOCAL_MACHINE</span></span>
<span id="cb6-2"><a href="#cb6-2"></a><span class="fu">distributed_type</span><span class="kw">:</span><span class="at"> MULTI_GPU</span></span>
<span id="cb6-3"><a href="#cb6-3"></a><span class="fu">main_training_function</span><span class="kw">:</span><span class="at"> main</span></span>
<span id="cb6-4"><a href="#cb6-4"></a><span class="fu">mixed_precision</span><span class="kw">:</span><span class="at"> bf16</span></span>
<span id="cb6-5"><a href="#cb6-5"></a><span class="fu">num_machines</span><span class="kw">:</span><span class="at"> </span><span class="dv">1</span></span>
<span id="cb6-6"><a href="#cb6-6"></a><span class="fu">num_processes</span><span class="kw">:</span><span class="at"> </span><span class="dv">8</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div><div class="column" style="width:40%;">
<div class="code-with-filename">
<div class="code-with-filename-file">
<pre><strong>fsdp_config.yaml</strong></pre>
</div>
<div class="sourceCode" id="cb7" data-filename="fsdp_config.yaml"><pre class="sourceCode numberSource yaml number-lines code-with-copy"><code class="sourceCode yaml"><span id="cb7-1"><a href="#cb7-1"></a><span class="fu">compute_environment</span><span class="kw">:</span><span class="at"> LOCAL_MACHINE</span></span>
<span id="cb7-2"><a href="#cb7-2"></a><span class="fu">distributed_type</span><span class="kw">:</span><span class="at"> FSDP</span></span>
<span id="cb7-3"><a href="#cb7-3"></a><span class="fu">fsdp_config</span><span class="kw">:</span></span>
<span id="cb7-4"><a href="#cb7-4"></a><span class="at"> </span><span class="fu">fsdp_auto_wrap_policy</span><span class="kw">:</span><span class="at"> TRANSFORMER_BASED_WRAP</span></span>
<span id="cb7-5"><a href="#cb7-5"></a><span class="at"> </span><span class="fu">fsdp_backward_prefetch</span><span class="kw">:</span><span class="at"> BACKWARD_PRE</span></span>
<span id="cb7-6"><a href="#cb7-6"></a><span class="at"> </span><span class="fu">fsdp_cpu_ram_efficient_loading</span><span class="kw">:</span><span class="at"> </span><span class="ch">true</span></span>
<span id="cb7-7"><a href="#cb7-7"></a><span class="at"> </span><span class="fu">fsdp_forward_prefetch</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
<span id="cb7-8"><a href="#cb7-8"></a><span class="at"> </span><span class="fu">fsdp_offload_params</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
<span id="cb7-9"><a href="#cb7-9"></a><span class="at"> </span><span class="fu">fsdp_sharding_strategy</span><span class="kw">:</span><span class="at"> FULL_SHARD</span></span>
<span id="cb7-10"><a href="#cb7-10"></a><span class="at"> </span><span class="fu">fsdp_state_dict_type</span><span class="kw">:</span><span class="at"> SHARDED_STATE_DICT</span></span>
<span id="cb7-11"><a href="#cb7-11"></a><span class="at"> </span><span class="fu">fsdp_sync_module_states</span><span class="kw">:</span><span class="at"> </span><span class="ch">true</span></span>
<span id="cb7-12"><a href="#cb7-12"></a><span class="at"> </span><span class="fu">fsdp_use_orig_params</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
<span id="cb7-13"><a href="#cb7-13"></a><span class="fu">main_training_function</span><span class="kw">:</span><span class="at"> main</span></span>
<span id="cb7-14"><a href="#cb7-14"></a><span class="fu">mixed_precision</span><span class="kw">:</span><span class="at"> bf16</span></span>
<span id="cb7-15"><a href="#cb7-15"></a><span class="fu">num_machines</span><span class="kw">:</span><span class="at"> </span><span class="dv">1</span></span>
<span id="cb7-16"><a href="#cb7-16"></a><span class="fu">num_processes</span><span class="kw">:</span><span class="at"> </span><span class="dv">8</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
</div>
</section></section>
<section>
<section id="a-training-library" class="title-slide slide level1 center">
<h1>A Training Library</h1>
</section>
<section id="a-training-library-the-code" class="slide level2">
<h2>A Training Library: The Code</h2>
<div class="columns" style="font-size: 50%;">
<div class="column">
<p><br><br><br></p>
<div class="sourceCode" id="cb8" data-code-line-numbers="5-6,9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1"></a><span class="co"># For alignment purposes</span></span>
<span id="cb8-2"><a href="#cb8-2"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb8-3"><a href="#cb8-3"></a> optimizer.zero_grad()</span>
<span id="cb8-4"><a href="#cb8-4"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb8-5"><a href="#cb8-5"></a> inputs <span class="op">=</span> inputs.to(device)</span>
<span id="cb8-6"><a href="#cb8-6"></a> targets <span class="op">=</span> targets.to(device)</span>
<span id="cb8-7"><a href="#cb8-7"></a> outputs <span class="op">=</span> model(inputs)</span>
<span id="cb8-8"><a href="#cb8-8"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
<span id="cb8-9"><a href="#cb8-9"></a> loss.backward()</span>
<span id="cb8-10"><a href="#cb8-10"></a> optimizer.step()</span>
<span id="cb8-11"><a href="#cb8-11"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div><div class="column">
<div class="sourceCode" id="cb9" data-code-line-numbers="1-7,12-13,16"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span>
<span id="cb9-2"><a href="#cb9-2"></a>accelerator <span class="op">=</span> Accelerator()</span>
<span id="cb9-3"><a href="#cb9-3"></a>dataloader, model, optimizer scheduler <span class="op">=</span> (</span>
<span id="cb9-4"><a href="#cb9-4"></a> accelerator.prepare(</span>
<span id="cb9-5"><a href="#cb9-5"></a> dataloader, model, optimizer, scheduler</span>
<span id="cb9-6"><a href="#cb9-6"></a> )</span>
<span id="cb9-7"><a href="#cb9-7"></a>)</span>
<span id="cb9-8"><a href="#cb9-8"></a></span>
<span id="cb9-9"><a href="#cb9-9"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb9-10"><a href="#cb9-10"></a> optimizer.zero_grad()</span>
<span id="cb9-11"><a href="#cb9-11"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb9-12"><a href="#cb9-12"></a> <span class="co"># inputs = inputs.to(device)</span></span>
<span id="cb9-13"><a href="#cb9-13"></a> <span class="co"># targets = targets.to(device)</span></span>
<span id="cb9-14"><a href="#cb9-14"></a> outputs <span class="op">=</span> model(inputs)</span>
<span id="cb9-15"><a href="#cb9-15"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
<span id="cb9-16"><a href="#cb9-16"></a> accelerator.backward(loss) <span class="co"># loss.backward()</span></span>
<span id="cb9-17"><a href="#cb9-17"></a> optimizer.step()</span>
<span id="cb9-18"><a href="#cb9-18"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
</section>
<section id="a-training-library-how-scaling-works" class="slide level2">
<h2>A Training Library: How Scaling Works</h2>
<ul>
<li>Accelerate’s DataLoaders and schedulers work off of a sharding mindset</li>
<li>Rather than repeating the same data across <code>n</code> nodes, we instead split it</li>
<li>Speeds up training linearly</li>
<li>Given a batch size of 16 on a single GPU, to recreate this across 8 GPUs you would use a batch size of 2</li>
<li>This also means the scheduler will be stepped <code>n</code> GPUs at a time per “global step”</li>
</ul>
</section>
<section id="a-training-library-mixed-precision" class="slide level2">
<h2>A Training Library: Mixed Precision</h2>
<ul>
<li>This may be a bit different than your “normal” idea of mixed precision.</li>
<li>We do <strong>not</strong> convert the model weights to BF16/FP16</li>
<li>Instead we <strong>wrap the forward pass</strong> with <code>autocast</code> to convert the gradients automatically</li>
<li>This preserves the original precision of the weights, which leads to stable training and better fine-tuning later on.</li>
<li><strong>If you use <code>.bf16()</code> weights, you are STUCK in bf16 perminantly</strong></li>
</ul>
</section>
<section id="a-training-library-mixed-precision-1" class="slide level2">
<h2>A Training Library: Mixed Precision</h2>
<ul>
<li>Let’s tie that back up to the model estimator with neat tools like NVIDIA’s TransformerEngine</li>
</ul>
<div style="font-size: 60%;">
<table style="width:100%;">
<colgroup>
<col style="width: 14%">
<col style="width: 14%">
<col style="width: 14%">
<col style="width: 14%">
<col style="width: 14%">
<col style="width: 14%">
<col style="width: 14%">
</colgroup>
<thead>
<tr class="header">
<th>Optimization Level</th>
<th>Computation (GEMM)</th>
<th>Comm</th>
<th>Weight</th>
<th>Master Weight</th>
<th>Weight Gradient</th>
<th>Optimizer States</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>FP16 AMP</td>
<td>FP16</td>
<td>FP32</td>
<td>FP32</td>
<td>N/A</td>
<td>FP32</td>
<td>FP32+FP32</td>
</tr>
<tr class="even">
<td>Nvidia TE</td>
<td>FP8</td>
<td>FP32</td>
<td>FP32</td>
<td>N/A</td>
<td>FP32</td>
<td>FP32+FP32</td>
</tr>
<tr class="odd">
<td>MS-AMP O1</td>
<td>FP8</td>
<td>FP8</td>
<td>FP16</td>
<td>N/A</td>
<td>FP8</td>
<td>FP32+FP32</td>
</tr>
<tr class="even">
<td>MS-AMP O2</td>
<td>FP8</td>
<td>FP8</td>
<td>FP16</td>
<td>N/A</td>
<td>FP8</td>
<td>FP8+FP16</td>
</tr>
<tr class="odd">
<td>MS-AMP O3</td>
<td>FP8</td>
<td>FP8</td>
<td>FP8</td>
<td>FP16</td>
<td>FP8</td>
<td>FP8+FP16</td>
</tr>
</tbody>
</table>
</div>
<aside class="notes">
<p>What is actually happening: * Linear Layers and other certain compatible layers are wrapped in a special version that allows for FP8 computation * The general forward pass is wrapped around BF16 * This means that the most memory saved is done during the gradients of the model, <em>not</em> the model itself. * With tools like <code>MS-AMP</code> we can convert more chunks into lower precision, but again like before stable training occurs when the models weights are in full precision and the backprop happens in full precision too.</p>
<style type="text/css">
span.MJX_Assistive_MathML {
position:absolute!important;
clip: rect(1px, 1px, 1px, 1px);
padding: 1px 0 0 0!important;
border: 0!important;
height: 1px!important;
width: 1px!important;
overflow: hidden!important;
display:block!important;
}</style></aside>
</section>
<section id="deepspeed-vs-fully-sharded-data-parallelism" class="slide level2">
<h2>DeepSpeed vs Fully Sharded Data Parallelism</h2>
<ul>
<li>Extremely similar, however mostly used different naming conventions for items and slight tweaks in the implementation</li>
</ul>
<div style="font-size: 50%;">
<table style="width:100%;">
<colgroup>
<col style="width: 16%">
<col style="width: 16%">
<col style="width: 16%">
<col style="width: 16%">
<col style="width: 16%">
<col style="width: 16%">
</colgroup>
<thead>
<tr class="header">
<th>Framework</th>
<th>Model Loading (<code>torch_dtype</code>)</th>
<th>Mixed Precision</th>
<th>Preparation (Local)</th>
<th>Training</th>
<th>Optimizer (Local)</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>FSDP</td>
<td>bf16</td>
<td>default (none)</td>
<td>bf16</td>
<td>bf16</td>
<td>bf16</td>
</tr>
<tr class="even">
<td>FSDP</td>
<td>bf16</td>
<td>bf16</td>
<td>fp32</td>
<td>bf16</td>
<td>fp32</td>
</tr>
<tr class="odd">
<td>DeepSpeed</td>
<td>bf16</td>
<td>bf16</td>
<td>fp32</td>
<td>bf16</td>
<td>fp32</td>
</tr>
</tbody>
</table>
</div>
<p>To learn more, check out the <a href="https://huggingface.co/docs/accelerate/concept_guides/fsdp_and_deepspeed">documentation</a> or join my office hours</p>
</section>
<section id="key-takeaways" class="slide level2">
<h2>Key Takeaways:</h2>
<ul>
<li>You can scale out training with <code>accelerate</code>, FSDP, and DeepSpeed across multiple GPUs to train bigger models</li>
<li>Techniques like <code>FP8</code> can help speed up training some and reduce computational overhead</li>
<li>Comes at a cost of end-precision and locking model weights for futher fine-tunes if not careful</li>
</ul>
</section>
<section id="some-handy-resources" class="slide level2">
<h2>Some Handy Resources</h2>
<ul>
<li><a href="https://hf.co/docs/accelerate">🤗 Accelerate documentation</a></li>
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/launch">Launching distributed code</a></li>
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/notebook">Distributed code and Jupyter Notebooks</a></li>
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/migration">Migrating to 🤗 Accelerate easily</a></li>
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/big_modeling">Big Model Inference tutorial</a></li>
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/deepspeed">DeepSpeed and 🤗 Accelerate</a></li>
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/fsdp">Fully Sharded Data Parallelism and 🤗 Accelerate</a></li>
<li><a href="https://huggingface.co/docs/accelerate/concept_guides/fsdp_and_deepspeed">FSDP vs DeepSpeed In-Depth</a></li>
</ul>
<div class="footer footer-default">
</div>
</section></section>
</div>
</div>
<script>window.backupDefine = window.define; window.define = undefined;</script>
<script src="llm_conf_files/libs/revealjs/dist/reveal.js"></script>
<!-- reveal.js plugins -->
<script src="llm_conf_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>
<script src="llm_conf_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script>
<script src="llm_conf_files/libs/revealjs/plugin/reveal-menu/menu.js"></script>
<script src="llm_conf_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script>
<script src="llm_conf_files/libs/revealjs/plugin/quarto-support/support.js"></script>
<script src="llm_conf_files/libs/revealjs/plugin/notes/notes.js"></script>
<script src="llm_conf_files/libs/revealjs/plugin/search/search.js"></script>
<script src="llm_conf_files/libs/revealjs/plugin/zoom/zoom.js"></script>
<script src="llm_conf_files/libs/revealjs/plugin/math/math.js"></script>
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script>
<script>
// Full list of configuration options available at:
// https://revealjs.com/config/
Reveal.initialize({
'controlsAuto': true,
'previewLinksAuto': false,
'pdfSeparateFragments': false,
'autoAnimateEasing': "ease",
'autoAnimateDuration': 1,
'autoAnimateUnmatched': true,
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.togglePdfExport(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true},
'smaller': false,
// Display controls in the bottom right corner
controls: false,
// Help the user learn the controls by providing hints, for example by
// bouncing the down arrow when they first encounter a vertical slide
controlsTutorial: false,
// Determines where controls appear, "edges" or "bottom-right"
controlsLayout: 'edges',
// Visibility rule for backwards navigation arrows; "faded", "hidden"
// or "visible"
controlsBackArrows: 'faded',
// Display a presentation progress bar
progress: true,
// Display the page number of the current slide
slideNumber: false,
// 'all', 'print', or 'speaker'
showSlideNumber: 'all',
// Add the current slide number to the URL hash so that reloading the
// page/copying the URL will return you to the same slide
hash: true,
// Start with 1 for the hash rather than 0
hashOneBasedIndex: false,
// Flags if we should monitor the hash and change slides accordingly
respondToHashChanges: true,
// Push each slide change to the browser history
history: true,
// Enable keyboard shortcuts for navigation
keyboard: true,
// Enable the slide overview mode
overview: true,
// Disables the default reveal.js slide layout (scaling and centering)
// so that you can use custom CSS layout
disableLayout: false,
// Vertical centering of slides
center: false,
// Enables touch navigation on devices with touch input
touch: true,
// Loop the presentation
loop: false,
// Change the presentation direction to be RTL
rtl: false,
// see https://revealjs.com/vertical-slides/#navigation-mode
navigationMode: 'linear',
// Randomizes the order of slides each time the presentation loads
shuffle: false,
// Turns fragments on and off globally
fragments: true,
// Flags whether to include the current fragment in the URL,
// so that reloading brings you to the same fragment position
fragmentInURL: false,
// Flags if the presentation is running in an embedded mode,
// i.e. contained within a limited portion of the screen
embedded: false,
// Flags if we should show a help overlay when the questionmark
// key is pressed
help: true,
// Flags if it should be possible to pause the presentation (blackout)
pause: true,
// Flags if speaker notes should be visible to all viewers
showNotes: false,
// Global override for autoplaying embedded media (null/true/false)
autoPlayMedia: null,
// Global override for preloading lazy-loaded iframes (null/true/false)
preloadIframes: null,
// Number of milliseconds between automatically proceeding to the
// next slide, disabled when set to 0, this value can be overwritten
// by using a data-autoslide attribute on your slides
autoSlide: 0,
// Stop auto-sliding after user input
autoSlideStoppable: true,
// Use this method for navigation when auto-sliding
autoSlideMethod: null,
// Specify the average time in seconds that you think you will spend
// presenting each slide. This is used to show a pacing timer in the
// speaker view
defaultTiming: null,
// Enable slide navigation via mouse wheel
mouseWheel: false,
// The display mode that will be used to show slides
display: 'block',
// Hide cursor if inactive
hideInactiveCursor: true,
// Time before the cursor is hidden (in ms)
hideCursorTime: 5000,
// Opens links in an iframe preview overlay
previewLinks: false,
// Transition style (none/fade/slide/convex/concave/zoom)
transition: 'none',
// Transition speed (default/fast/slow)
transitionSpeed: 'default',
// Transition style for full page slide backgrounds
// (none/fade/slide/convex/concave/zoom)
backgroundTransition: 'none',
// Number of slides away from the current that are visible
viewDistance: 3,
// Number of slides away from the current that are visible on mobile
// devices. It is advisable to set this to a lower number than
// viewDistance in order to save resources.
mobileViewDistance: 2,
// The "normal" size of the presentation, aspect ratio will be preserved
// when the presentation is scaled to fit different resolutions. Can be
// specified using percentage units.
width: 1050,
height: 700,
// Factor of the display size that should remain empty around the content
margin: 0.1,
math: {
mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
config: 'TeX-AMS_HTML-full',
tex2jax: {
inlineMath: [['\\(','\\)']],
displayMath: [['\\[','\\]']],
balanceBraces: true,
processEscapes: false,
processRefs: true,
processEnvironments: true,
preview: 'TeX',
skipTags: ['script','noscript','style','textarea','pre','code'],
ignoreClass: 'tex2jax_ignore',
processClass: 'tex2jax_process'
},
},
// reveal.js plugins
plugins: [QuartoLineHighlight, PdfExport, RevealMenu, QuartoSupport,
RevealMath,
RevealNotes,
RevealSearch,
RevealZoom
]
});
</script>
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const tabsets = window.document.querySelectorAll(".panel-tabset-tabby")
tabsets.forEach(function(tabset) {
const tabby = new Tabby('#' + tabset.id);
});
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const clipboard = new window.ClipboardJS('.code-copy-button', {
text: function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
const config = {
allowHTML: true,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.closest('section.slide') || el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'light-border',
placement: 'bottom-start',
};
if (contentFn) {
config.content = contentFn;
}
if (onTriggerFn) {
config.onTrigger = onTriggerFn;
}
if (onUntriggerFn) {
config.onUntrigger = onUntriggerFn;
}
config['offset'] = [0,0];
config['maxWidth'] = 700;
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
return note.innerHTML;
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
</body></html> |