tomaarsen HF staff commited on
Commit
4af3178
·
verified ·
1 Parent(s): 97c35aa

[`refactor`]: Tab & URL syncing; parameter counts as model size; filtering; search (#89)

Browse files

- Compute model size based on number of parameters (bd6a61b46998cdcc89eeb567850b734a48b87737)
- Refactor gradio Tabs initialization (56def8ad644fed5c5ef653500101899fe01c6876)
- Introduce tabs <-> URL relation for easier sharing (2d428eb2835e975816ff72bcda38cfe96323bcd3)
- Reintroduce missing markdown (e2b41c870d6e112347e1ba44c8620fcaf88bd719)
- Add search bar/filtering; always show Model Size (ab565badcfc1c2b02ddce0c2a0618875b5f8982f)
- Ignore voyage-lite model size (82d58936b4312ab7fb0ef838b7bac1df70a46d45)
- Remove debugging statement (d81785e017b21579643aab840f584d59d0c95179)
- Introduce new intervals: 100M & 250M and 250M & 500M (2eb890dc40c9a4e71475f42b024d703a9f45db7b)
- API -> Proprietary (cfacdeee424f776fb60c10adbe3f4a9bb04d9f2a)
- Add Sentence Transformers model type option (6c6aac59f6d2f5f1744c9618e30e7be17a82d0b9)
- Fix embedding dimensions if Dense module exists (e82960d3779fe6bec1618330b1cbf63c4d383e9d)
- Use separate proprietary models list (561360760efd385ce82ea67ebca7674d6526a515)
- Fix proprietary models disappearing after model size toggling (485f27b4dcf9a19d4c963c858641da9da2da4a33)
- Increment gradio SDK version (fefaea64210d697cb4a0cf4a24a0c156784fdb1d)
- Base "Open" models on the proprietary model list (2db25dc3a419e68be78dca9ef0e997e8e38588ae)
- Update e5-mistral-7b model size from 7110 to 7111 (418d26a052f7f729cdabf09aeba288b02581ba4b)
- Merge branch 'main' into model_size_parameters (7d3a9f6218e33c393a5d886b415a64c740f593ff)
- Add Memory Usage column to all tables (970b6a5470a7aef9a30ed14a27ae957f82c2b131)
- List Cohere-embed-english-v3.0 as proprietary (5bd316f1be45e51845d64c6908cfa7c1b18ba88a)
- Merge branch 'main' into model_size_parameters (0ebd4b87bbe1abf36714d2d16bbb08a528912334)
- Move globals around slightly (a8ba8f1f0e653322bb5447a2abfa437e3e74baba)
- Add parameter count for Google Gecko (4de60b86d8f1da6f6c10a7b9bb631f4165e18724)

Files changed (5) hide show
  1. .gitignore +1 -0
  2. README.md +1 -1
  3. app.py +0 -0
  4. utils/__init__.py +0 -0
  5. utils/model_size.py +40 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ *.pyc
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🥇
4
  colorFrom: blue
5
  colorTo: indigo
6
  sdk: gradio
7
- sdk_version: 4.0.2
8
  app_file: app.py
9
  pinned: false
10
  tags:
 
4
  colorFrom: blue
5
  colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 4.20.0
8
  app_file: app.py
9
  pinned: false
10
  tags:
app.py CHANGED
The diff for this file is too large to render. See raw diff
 
utils/__init__.py ADDED
File without changes
utils/model_size.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import re
3
+ from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata, model_info as get_model_info, get_hf_file_metadata, hf_hub_url
4
+ from huggingface_hub import hf_hub_download
5
+
6
+ # Map model IDs to the number of bytes used for one parameter. So, 4 bytes for fp32, 2 bytes for fp16, etc.
7
+ # By default, we assume that the model is stored in fp32.
8
+ KNOWN_BYTES_PER_PARAM = {}
9
+
10
+
11
+ def get_model_parameters_memory(model_info: ModelInfo):
12
+ '''Get the size of the model in million of parameters.'''
13
+ try:
14
+ safetensors = get_safetensors_metadata(model_info.id)
15
+ num_parameters = sum(safetensors.parameter_count.values())
16
+ return round(num_parameters / 1e6), round(num_parameters * 4 / 1024**3, 2)
17
+ except Exception as e:
18
+ pass
19
+
20
+ filenames = [sib.rfilename for sib in model_info.siblings]
21
+ if "pytorch_model.bin" in filenames:
22
+ url = hf_hub_url(model_info.id, filename="pytorch_model.bin")
23
+ meta = get_hf_file_metadata(url)
24
+ bytes_per_param = KNOWN_BYTES_PER_PARAM.get(model_info.id, 4)
25
+ return round(meta.size / bytes_per_param / 1e6), round(meta.size / 1024**3, 2)
26
+
27
+ if "pytorch_model.bin.index.json" in filenames:
28
+ index_path = hf_hub_download(model_info.id, filename="pytorch_model.bin.index.json")
29
+ """
30
+ {
31
+ "metadata": {
32
+ "total_size": 28272820224
33
+ },....
34
+ """
35
+ size = json.load(open(index_path))
36
+ bytes_per_param = KNOWN_BYTES_PER_PARAM.get(model_info.id, 4)
37
+ if ("metadata" in size) and ("total_size" in size["metadata"]):
38
+ return round(size["metadata"]["total_size"] / bytes_per_param / 1e6), round(size["metadata"]["total_size"] / 1024**3, 2)
39
+
40
+ return None, None